
Journal of Computational Physics 228 (2009) 5490–5525
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
Computationally efficient implementation of combustion chemistry
in parallel PDF calculations

Liuyan Lu a,*, Steven R. Lantz b, Zhuyin Ren a, Stephen B. Pope a

a Sibley School of Mechanical and Aerospace Engineering, Cornell University, Upson Hall 245, Ithaca, NY 14853, USA
b Center for Advanced Computing, Cornell University, Ithaca, NY 14853, USA

a r t i c l e i n f o
Article history:
Received 23 November 2008
Accepted 20 April 2009
Available online 6 May 2009

PACS:
07.05.Mh
46.15.�x
47.11.�j

Keywords:
ISAT
Combustion chemistry
Parallel calculation
Distribution strategy
Load balance
0021-9991/$ - see front matter � 2009 Elsevier Inc
doi:10.1016/j.jcp.2009.04.037

* Corresponding author.
E-mail address: lu.liuyan@gmail.com (L. Lu).
a b s t r a c t

In parallel calculations of combustion processes with realistic chemistry, the serial in situ
adaptive tabulation (ISAT) algorithm [S.B. Pope, Computationally efficient implementation
of combustion chemistry using in situ adaptive tabulation, Combustion Theory and Model-
ling, 1 (1997) 41–63; L. Lu, S.B. Pope, An improved algorithm for in situ adaptive tabulation,
Journal of Computational Physics 228 (2009) 361–386] substantially speeds up the chem-
istry calculations on each processor. To improve the parallel efficiency of large ensembles
of such calculations in parallel computations, in this work, the ISAT algorithm is extended
to the multi-processor environment, with the aim of minimizing the wall clock time
required for the whole ensemble. Parallel ISAT strategies are developed by combining
the existing serial ISAT algorithm with different distribution strategies, namely purely local
processing (PLP), uniformly random distribution (URAN), and preferential distribution
(PREF). The distribution strategies enable the queued load redistribution of chemistry cal-
culations among processors using message passing. They are implemented in the software
x2f mpi, which is a Fortran 95 library for facilitating many parallel evaluations of a general
vector function. The relative performance of the parallel ISAT strategies is investigated in
different computational regimes via the PDF calculations of multiple partially stirred reac-
tors burning methane/air mixtures. The results show that the performance of ISAT with a
fixed distribution strategy strongly depends on certain computational regimes, based on
how much memory is available and how much overlap exists between tabulated informa-
tion on different processors. No one fixed strategy consistently achieves good performance
in all the regimes. Therefore, an adaptive distribution strategy, which blends PLP, URAN
and PREF, is devised and implemented. It yields consistently good performance in all
regimes. In the adaptive parallel ISAT strategy, the type and extent of redistribution is
determined ‘‘on the fly” based on the prediction of future simulation time. Compared to
the PLP/ISAT strategy where chemistry calculations are essentially serial, a speed-up factor
of up to 30 is achieved. The study also demonstrates that the adaptive strategy has accept-
able parallel scalability.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Numerical calculations of reactive flows with realistic chemical kinetics are computationally expensive. At the same time,
they are becoming increasingly important both in understanding the physical processes and in the design and development
of practical systems, such as engines and combustors. The computational difficulty is caused by the large number of chemical
. All rights reserved.

mailto:lu.liuyan@gmail.com
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp

Nomenclature

Roman symbols
A mapping gradient matrix with components Aij � @fi=@xj

A� critical number of ISAT table entries
A maximum number of table entries per processor allowed
a number of table entries in a serial calculation
ai total number of tabulated table entries in all processors in group i in the adaptive strategy
a�L maximum number of table entries per processor allowed on the Lth pairing stage in the adaptive strategy
f(x) function of x of dimension nf

f l linear approximation to f(x)
g number of processors in each group in the adaptive strategy
L overlap matrix with components Lij � Pij=Pii

Ms total number of pairing stages, Ms ¼ log2ðNpÞ
Mr number of partially stirred reactors in the simulation
ns number of species
n/ dimension of composition /

nx dimension of x
nf dimension of f
N number of particles in a partially stirred reactor
NFij average number of particles per processor requiring function evaluation when groups i and j are paired
Ni average number of particles per processor in group i in the adaptive strategy
Ng number of groups in the simulation
Nij average number of particles processed on each processor when groups i and j are paired
Ni;a number of particles on processor a in group i
Np total number of processors in a simulation
Pij probability of a particle composition from group i being able to be retrieved from the ISAT table(s) in group j in

the adaptive strategybPab probability of a particle composition from processor a being able to be retrieved from the ISAT table on processor
b in the adaptive strategy

pA probability of a query resulting in an add
pAðq; aÞ probability of add on the qth query when there are a table entries
pAðaÞ probability of add when there are a table entries
pAi probability of a query resulting in an add for group i
pD probability of a query resulting in a discarded evaluation (DE)
pF probability of a query resulting in a function evaluation, pF ¼ pA þ pG þ pD
pFi probability of a query resulting in a function evaluation for group i
pfd threshold value of the frequency of the add and grow events below which an ISAT table is considered fully devel-

oped (see Eq. (C.1))
pG probability of a query resulting in a grow
pR probability of a query resulting in a retrieve ðpR ¼ 1� pFÞ
Qa number of queries performed on processor a
q;Q number of queries performed
qf ðAÞ query on which ISAT table becomes full (i.e., ISAT fills A table entries)
qðaÞ number of queries resulting in a table entries
Rð/Þ reaction mapping
r exponent in the observed power law Eq. (A.4)
S chemical source term Eq. (3)
s ratio between A and A�, i.e., s ¼ A=A�

T average wall clock time spent in reaction fractional step for one block of particles
T 0i estimated wall clock time spent in reaction fractional step for one block of particles for group i
T 0ij estimated wall clock time spent in reaction fractional step for one block of particles for the hypothetical pairing

between group i and jði – jÞ
T 0np estimated wall clock time spent in reaction fractional step for one block of particles with no pairing performed
T 0p estimated wall clock time spent in reaction fractional step for one block of particles with the optimal pairing
tF average CPU time for a function evaluation
tF;w average wall clock time for a function evaluation
tFi;w average wall clock time for a function evaluation on group i
tQ average CPU time for a query
tQ ;w average wall clock time for a query
tR average CPU time for a retrieve

L. Lu et al. / Journal of Computational Physics 228 (2009) 5490–5525 5491

tR;w average wall clock time for a retrieve
tRi;w average wall clock time for a retrieve on group i
tRij;w average wall clock time for a retrieve when groups i and j are paired
tRj!i;w average wall clock time per particle for particles from group j attempting to retrieve from ISAT tables on group i
x vector of dimension nx

Greek symbols
Dt time step in reaction fractional step
etol user-specified error tolerance for ISAT
e incurred local error in ISAT Eq. (6)
smix specified mixing time scale in a PaSR
sres specified residence time scale in a PaSR
spair specified pairing time scale in a PaSR
/ particle composition

Calligraphic
A add region
D particle composition distribution
G grow region
Pk kth feasible pairing
R retrieve region

Superscripts
0 estimated quantity

Abbreviations
ISAT in situ adaptive tabulation
PLP purely local processing
PREF preferential distribution
URAN uniform random distribution
PaSR partially stirred reactor
ODE ordinary differential equation
EOA ellipsoid of accuracy
ROA region of accuracy

5492 L. Lu et al. / Journal of Computational Physics 228 (2009) 5490–5525
species and the wide range of time scales involved in chemical kinetics. A realistic description of combustion chemistry for
hydrocarbon fuels typically involves tens to thousands of chemical species [3,4], and the time scales usually range from
10�9 s to over 1 s [5,6]. The above considerations motivate the well-recognized need for the development of methodologies
that radically decrease the computational burden imposed by the direct use of realistic chemistry in reactive flow calcula-
tions. Among such methodologies are storage/retrieval approaches including structured look-up tabulation [7], repro-mod-
elling [8], artificial neural networks (ANN) [9,10], in situ adaptive tabulation (ISAT) [1,2], piecewise reusable implementation
of solution mapping (PRISM) [11,12], and high dimension model representations (HDMR) [13].

The ISAT [1] algorithm is currently particularly fruitful and it has been widely used to incorporate reduced or detailed
chemical mechanisms in probability density function (PDF) [14] calculations of turbulent nonpremixed flames [15–20].
While the computational efficiency of the ISAT algorithm is greatest in statistically stationary reactive flows, such as the San-
dia turbulent jet flames where a speed-up factor of 100–1000 is achieved, ISAT has also been applied to the calculation of
transient processes such as combustion in IC engines [17] where a speed-up factor of more than 10 is reported. Recently,
ISAT has been incorporated in the LES/FDF approach [21,22] that offers the benefits of both large eddy simulation (LES) to
treat the turbulent flow and the PDF approach to treat turbulence–chemistry interactions. The ISAT algorithm has also been
applied to incorporate detailed chemical kinetics in the direct numerical simulation (DNS) of reactive flow [23,24]. Besides
the wide applications in the field of combustion, the applications of ISAT in other areas have been reported in [25–27].

When ISAT is employed to speed up chemistry calculations in computational fluid dynamics (CFD), which can be direct
numerical simulation (DNS), large eddy simulation (LES) or a probability density function (PDF) method, a reaction fractional
step is used to separate the chemical reactions from other processes such as convection and molecular diffusion. The task per-
formed by ISAT in the reaction fractional step is to determine the thermo-chemical compositions after a computational time
step (either variable or constant) due to chemical reactions. In the context of PDF methods [14], where the system within the
solution domain is represented by a large number of computational particles, the task for ISAT in the reaction step is to deter-
mine the particle compositions after reaction. We call a particle ‘‘resolved” when its composition after reaction has been ob-
tained. By tabulating useful information in binary trees called ISAT tables and reusing it, ISAT can substantially reduce the
number of chemical kinetic calculations required and therefore provide significant speed-up for chemistry calculations.

L. Lu et al. / Journal of Computational Physics 228 (2009) 5490–5525 5493
Despite the seemingly unending progress in microprocessor performance indicated by Moore’s law, large-scale compu-
tations of turbulent reactive flows with realistic chemistry demand that we pursue the additional factors of tens, hundreds,
or thousands in total performance which may be obtained by harnessing a multitude of processors for a single calculation.
For example, the terascale direct numerical simulations of three-dimensional turbulent temporally evolving plane CO/H2 jet
flames with an 11 species skeletal mechanism reported by Hawkes et al. [28] are performed on massively parallel processors.

One common type of platform to perform large-scale computations is a distributed memory system using some implemen-
tation of the message passing interface (MPI) to perform message passing between processors. The computation is most often
parallelized using domain decomposition on the coordinate grid that represents the spatial configuration of the flow: the whole
computational domain is decomposed into sub-domains and each processor performs the computation for one sub-domain.

When ISAT is employed to speed up the chemistry calculations in parallel PDF computations, each processor typically
maintains its own ISAT table. During the reaction fractional step, each processor has an ensemble of particles whose com-
positions at the end of the reaction step need to be determined. However the original ISAT algorithm by Pope [1] is serial in
the following sense: during the reaction fractional step each processor performs its own chemistry calculations without mes-
sage passing or load redistribution. Due to the nonuniform intensity of chemical reactions or nonuniform distribution of
computational particles among the sub-domains, there is usually significant load imbalance in the chemistry calculations.
For example, some sub-domains may have intense reaction activity, so the chemistry calculations are more challenging
and require more computational resources; whereas others may be essentially inert (e.g., pure air or pure fuel) and the
chemistry calculations are trivial. Previous calculations using spatial domain decomposition [21,22] show that even for a
simple two-dimensional, spatially developing, reacting, plane mixing layer, it is hard to achieve good load balance in chem-
istry calculations if ISAT is used without any message passing. Hence even though ISAT substantially speeds up the chemistry
calculations on each processor, the overall load imbalance in the chemistry calculations among the processors severely af-
fects the parallel efficiency and provides further opportunities to develop algorithms for more efficient chemistry calcula-
tions. However, it should be noted that (as described in Section 4) ISAT poses a non-standard load balancing problem
that cannot be solved readily by any common load balancing technique or software. Moreover load balance is not truly
the right target for optimization: wall clock time is. As revealed in previous studies [21,22], the optimal algorithm – the
one that minimizes the wall clock time for the chemistry calculations – may not necessarily give the best load balance.

The above observation motivates the development of parallel ISAT strategies with the objective of minimizing the wall
clock time taken to complete a reaction fractional step on all processors. There are several viable approaches for developing
parallel ISAT strategies such as parallelizing the current serial ISAT algorithm or developing distribution strategies to be used
in combination with the serial ISAT algorithm. The approach taken in this study is the latter, and it works as follows. In the
parallel calculations of reactive flows, each processor maintains its own ISAT table. During the reaction fractional step, the
particles on one processor may be distributed to one or more other processors, and be resolved by the ISAT tables there. Par-
ticles are distributed by message passing before and after ISAT, not within ISAT. Different distribution strategies have been
developed and implemented in software x2f mpi [22], which is a Fortran 95 library developed for facilitating many parallel
evaluations of a general vector function. The strategies discussed here are called purely local processing (PLP), uniformly ran-
dom distribution (URAN), and preferential distribution (PREF). For PLP, there is no message passing during the chemistry cal-
culations, and particles on one processor are locally processed via the local ISAT table. For URAN, the particles in a group of
processors are randomly distributed uniformly among all the processors in the group using message passing. For PREF, the
particles have preference to some processors: for example, particles can only be passed to those processors that they have
visited during a previous step, or have not already visited during the current step.

The distribution strategies developed for parallel ISAT can be applied in either a fixed or adaptive manner. For parallel
ISAT with a fixed distribution strategy, the particular strategy (e.g., PLP, URAN, or PREF) is specified by the user before a sim-
ulation and does not change. For the adaptive strategy, the type of distribution strategy can be changed on the fly based on a
comparison of predictions of future performance. In this study, the performance of the various fixed and adaptive parallel
ISAT strategies is investigated in parallel PDF calculations of the oxidation of methane/air mixtures in multiple partially stir-
red reactors (PaSR) on a distributed memory system.

The outline of the paper is as follows. In Section 2, the test case of partially stirred reactors (PaSR) burning methane/air
mixtures is described. In Section 3, the ISAT algorithm is briefly reviewed, and serial ISAT performance is characterized in
terms of regimes related to table size. The parallel calculation of reactive flows using ISAT is outlined in Section 4, and
the different distribution strategies in the software x2f mpi are detailed. In Section 5, parallel ISAT with various distribution
strategies is described and demonstrated, and the idea of a multi-stage process is introduced. In Section 6, the methodology,
the algorithm, and the performance of the adaptive strategy are presented. In Section 7, the relative performance of the par-
allel ISAT strategies in different computational regimes is investigated. The effect of the number of processors on the parallel
ISAT performance is discussed in Section 8. Section 9 discusses the implications of the results and outlines possible directions
for future work, and conclusions are drawn in Section 10.
2. Partially stirred reactor (PaSR)

The partially stirred reactor (PaSR) was used previously by Pope [1] to investigate the performance of ISAT in serial com-
putations. It has the advantage of simplicity in terms of controlling the distribution of particle compositions, and therefore

5494 L. Lu et al. / Journal of Computational Physics 228 (2009) 5490–5525
allows the performance of ISAT to be explored in different computational regimes (as demonstrated below). Moreover, the
amount of computational work spent outside of ISAT (i.e., the reaction fractional step) in a PaSR calculation is negligible,
which provides a more efficient use of computational resources for the study of ISAT performance. Due to its simplicity,
the PaSR has been widely used to investigate combustion models and numerical algorithms [1,29–32]. It is similar to a single
grid cell embedded in a large PDF computation of turbulent combustion.

In the stochastic simulation of a PaSR based on Monte Carlo methods, at time t, the reactor consists of an even number of
particles, N, with the ith particle having composition /iðtÞ. The composition is taken to be the species specific moles (mass
fractions over molecular weights) and the sensible enthalpy of the mixture. The particles are arranged in pairs: particles 1
and 2, 3 and 4; . . . ;N � 1 and N are partners. With Dt being the specified time step, at the discrete times kDt (k integer),
events occur corresponding to outflow, inflow and pairing, which can cause /iðtÞ to change discontinuously. Between these
discrete times, the composition evolves by a mixing fractional step and a reaction fractional step. The mixing fractional step
consists of pairs (p and q, say) evolving by
d/p

dt
¼ �ð/p � /qÞ=smix; ð1Þ

d/q

dt
¼ �ð/q � /pÞ=smix; ð2Þ
where smix is a specified mixing time scale. In the reaction fractional step, each particle evolves by the reaction equation
d/i

dt
¼ Sð/iÞ; ð3Þ
where S is the rate of change of composition given by the chemical kinetics.
With sres being the specified residence time, at the discrete times kDt, outflow and inflow consist of selecting 1

2 NDt=sres

pairs at random and replacing their compositions with inflow compositions, which are drawn from a specified distribution.
With spair being the specified pairing time scale, 1

2 NDt=spair pairs of particles (other than the inflowing particles) are randomly
selected for pairing. Then these particles and the inflowing particles are randomly shuffled so that (most likely) they change
partners. Between the discrete times, i.e., over a time step Dt, the composition evolves by one mixing step of Dt, followed by
one reaction step of Dt.

The fuel considered in this study is methane. The pressure is atmospheric throughout. The specified time scales are
sres ¼ 1� 10�2 s;smix ¼ 1� 10�3 s;spair ¼ 1� 10�3 s, and the time step is constant with Dt ¼ 4� 10�5 s.

In the serial PaSR calculations which are used to characterize the serial ISAT performance below, we consider both a 16-
species skeletal mechanism [33] and the GRI3.0 mechanism [3] (without nitrogen chemistry) consisting of 36 species. There
are three inflowing streams: air (79% N2, 21% O2 by volume) at 300 K; methane at 300 K; and a pilot stream consisting of the
adiabatic equilibrium products of a stoichiometric fuel/air mixture at a temperature of 2600 K, corresponding to an unburnt
temperature of 1113 K. The mass flow rates of these streams are in the ratio 0.85:0.1:0.05. The number of particles in the
reactor, N, is 100. Initially, all particle compositions are set to be the pilot stream composition. In order to explore ISAT per-
formance in the statistically stationary state, a statistically stationary solution is first obtained, then long-run simulations are
performed starting from this solution.

In this study, to investigate the parallel ISAT performance, the above serial PaSR is naturally extended to the multi-pro-
cessor environment through the creation of a multiple PaSR test case. In the parallel simulation of the multiple PaSR, Mr

independent reactors are distributed among the Np processors with each processor having Mr=Np reactor(s), with Mr being
an integer multiple of Np. For simplicity, all the cases considered below have the number of reactors equal to the number of
processors, i.e., Mr ¼ Np.

All the parallel calculations performed employ the GRI3.0 mechanism without nitrogen chemistry. Each reactor has three
inflowing streams: air, fuel, and pilot with the mass flow rates being in the ratio 0.85:0.1:0.05. For one class of test cases
considered below, all the reactors are statistically identical. There are three inflowing streams: air (79% N2, 21% O2 by
volume) at 300 K; methane at 300 K; and a pilot stream consisting of the adiabatic equilibrium products of a stoichiometric
fuel/air mixture at a temperature of 2600 K, corresponding to an unburnt temperature of 1113 K. For another class of cases
presented below, to make the composition distributions disjoint among the processors, by design, the above three inflowing
streams on each reactor are diluted by a specified amount of Argon, i.e., on the ath reactor (with a ¼ 1;2; � � � ;Np), each stream
is diluted so that the fraction of Ar (by mass) is ða� 1Þ=ða� 1þ 721=50Þ. In other words, on the ath reactor, the air stream is
diluted with Ar such that the ratio (by volume) of N2;O2 and Ar is 79:21:5ða� 1Þ, and the fuel and pilot streams are corre-
spondingly modified such that the fractions of Ar (by mass) in these two streams are the same as that of the air stream. Also
while keeping the unburnt temperature of the pilot stream unchanged (i.e., 1113 K), the temperatures of the inflowing air
and fuel stream on different processors change linearly, i.e., on the ath reactor, the temperatures of the fuel and air streams
are specified at ð300þ 50� ða� 1ÞÞ K. (These settings are chosen so that all the PaSR reactors yield burning solutions.) For
the case with a uniform number of queries, each reactor has 5000 particles. For the nonuniform cases, the reactor on the first
processor has Np � 5000 particles while the other reactors have 5000 particles each.

All the results from multiple PaSR test cases presented below are from long-run simulations restarting from pre-obtained
statistically stationary solutions (with empty ISAT tables). The ISAT error tolerance etol and the maximum number of entries
allowed A are given below for each case presented.

L. Lu et al. / Journal of Computational Physics 228 (2009) 5490–5525 5495
3. In situ adaptive tabulation (ISAT) for combustion chemistry

In this section, we first outline the essential concepts in the original ISAT algorithm [1]. The recent augmentations made in
the new implementation of ISAT, denoted as ISAT5, are detailed in [2]. Then we characterize the performance of ISAT (i.e.,
ISAT5) in the serial PDF calculation of the combustion process in a statistically stationary PaSR.

3.1. ISAT concepts

The in situ adaptive tabulation algorithm (ISAT) introduced by Pope [1] is a storage and retrieval method. Briefly stated,
ISAT is used to tabulate a function f(x), where f and x are vectors of length nf and nx, respectively.

Consider the application of ISAT for chemistry calculations in PDF calculations of the combustion process in an isobaric
PaSR. At time t, the thermo-chemical composition of the ith particle is represented by the n/ ¼ ns þ 1 variables /iðtÞ, where ns

is the number of chemical species. The evolution of particle composition due to reaction is treated in a separate fractional
step, where the particle composition evolves (at fixed pressure and enthalpy) according to Eq. (3), i.e.,
d/ðtÞ
dt
¼ Sð/ðtÞÞ: ð4Þ
The task in the reaction fractional step is to determine the reaction mapping Rð/0Þ � /ðt0 þ DtÞ, which is the solution to Eq.
(4) after a time step Dt from the initial condition /0 ¼ /ðt0Þ at time t0. Here, for simplicity, Dt is taken to be a constant. Hence
in the context of numerical calculations of the reaction fractional step using ISAT, x is the particle composition prior to the
reaction fractional step, /0, and f is the particle composition after the reaction fractional step, i.e., the reaction mapping
Rð/0Þ ¼ /ðt0 þ DtÞ. Thus nx and nf are both vectors of length ns þ 1. A function evaluation obtains the reaction mapping by
integrating Eq. (4).

ISAT uses the ODE solver DDASAC [34] to integrate Eq. (4) and stores the relevant information in a binary tree, with each
termination node (or leaf) representing a record consisting of (among other information) the tabulation point x, the reaction
mapping f, and the mapping gradient matrix A (or sensitivity matrix), defined as Aij ¼ @fi=@xj. For a given query composition
xq close to a tabulated point x, from the tabulated quantities at x, a linear approximation to fðxqÞ, denoted as f lðxqÞ, can be
obtained, i.e.,
f lðxqÞ � fðxÞ þ AðxÞðxq � xÞ: ð5Þ
The incurred local error is simply defined as the scaled difference between the exact mapping and the linear approximation,
i.e.,
e ¼ jBðfðxqÞ � f lðxqÞÞj; ð6Þ
where B is a scaling matrix [1].
In addition to x, f, and matrix A, at each leaf, an ellipsoid of accuracy (EOA) is also stored. An EOA is a hyperellipsoid used

to approximate the region of accuracy (ROA), which is defined to be the connected region in composition space containing x
in which the incurred local error e (defined by Eq. (6)) does not exceed the user-specified error tolerance etol.

For a given query xq, ISAT traverses the tree until a leaf representing some x is reached. This value of x is intended to be
close to xq. One of the following events is invoked to obtain an approximation to the corresponding function fðxqÞ.

� Retrieve. If the query point falls within the ellipsoid of accuracy (EOA) of x, a linear approximation to fðxqÞ is returned
through Eq. (5). This outcome is denoted as a retrieve.

� Grow. Otherwise (i.e., xq is outside of the EOA), a function evaluation is performed to determine fðxqÞ, which is exact and
returned. Moreover the error in the linear approximation is measured through Eq. (6). If the computed error is within the
user-specified tolerance etol, the EOA of the leaf node x is grown to include the query point. This outcome is called a grow.

� Add. In the previous (grow) process, if the computed error is greater than etol and the table is not full (i.e., the ISAT table
has not reached the allowed memory limit), a new entry associated with xq is added to the ISAT table. This is called an add.

� Discarded evaluation. If, however, the computed error is larger than etol and the table is full, then fðxqÞ obtained by the
function evaluation is returned without further action. (Hence the function evaluation has no effect on the ISAT table.)
This outcome is called a discarded evaluation.

(It is worth emphasizing that the above are the basic ISAT processes in the original ISAT algorithm [1]. The up-to-date
version of ISAT is detailed in [2]; the further innovations in that version do not affect our present discussion of the parallel
algorithm.)

Notice that one event of grow, add, or discarded evaluation involves one and only one function evaluation. The average
CPU time to perform a function evaluation (denoted as tF) is typically several orders of magnitude larger than the average
CPU time to perform a retrieve (denoted as tR). ISAT speeds up the chemistry calculations by obtaining the reaction mapping
using retrieve whenever possible. Moreover, in a large-scale calculation, the grow and add events are in general likely only
during the table building period, which typically accounts for only a small fraction of the whole simulation.

5496 L. Lu et al. / Journal of Computational Physics 228 (2009) 5490–5525
3.2. Characterization of serial ISAT performance

The parallel adaptive strategy (to be described below) is based on predictions of how well ISAT will perform much later
during a given simulation. Hence, in the remainder of Section 3.2 we characterize the performance of serial ISAT to provide a
basis for such predictions.

When ISAT is employed for chemistry calculations in simulating reactive flows, there are many factors affecting its
performance, e.g.: the stationarity of the simulation; the length of the simulation; the dimensionality of x and f; the cost
of evaluating fðxÞ; the particular implementation of the ISAT algorithm; the user-specified ISAT error tolerance etol; and
the user-specified memory allowed for the ISAT table.

An ISAT task is defined by the function f(x), the total number of queries Q, the error tolerance etol, the given implemen-
tation of the ISAT algorithm, and the distribution DðxÞ from which the ith query xi is drawn. In this study, the distribution
DðxÞ considered is stationary (i.e., independent of i), and the simulation results in a very large number of ISAT queries, Q. We
consider the case where the physical memory limits the number of ISAT table entries, A, that can be tabulated. Given an ISAT
task, to understand the ISAT performance, it is important to investigate the probabilities of different ISAT events and their
dependence on the allowed table entries.

To characterize the ISAT performance, we consider serial PDF calculations of the statistically stationary nonpremixed
methane/air combustion in a PaSR. Each is a long-run calculation resulting in a very large number of ISAT queries Q.

3.2.1. Probability of function evaluation after many queries
When ISAT is used to facilitate chemistry calculations, initially the ISAT table is empty. During the calculation, the ISAT

table is built and developed through grows and adds. For a given ISAT task, during the calculation, the probabilities of dif-
ferent events depend on the allowed number of table entries, A, and the number of queries performed, q. Let
pRðq;AÞ; pGðq;AÞ; pAðq;AÞ and pDðq;AÞ denote the probabilities of retrieve, grow, add, and discarded evaluation on the qth
query with the allowed table entries A, respectively. We have
Fig. 1.
the ske
of add i
the poi
pRðq;AÞ þ pGðq;AÞ þ pAðq;AÞ þ pDðq;AÞ ¼ 1: ð7Þ
In the calculations, these probabilities can be estimated from the recorded ISAT statistics.
Fig. 1 shows the probabilities of different events against the number of queries from a PaSR calculation. In the early stage

of the simulation, the number of add and grow events are significant and the sum of their probabilities can be more than 10%.
In contrast, in the late stage of the simulation, the probability of add and grow decreases monotonically. Conceptually, the
operation of ISAT in the simulation can therefore be thought of in terms of a building phase, in which the ISAT table is built
and developed by grows and adds; and a retrieving phase in which adds and grows are negligible or non-existent, and essen-
tially all queries are resolved by retrieves or discarded evaluations (if the table is full). For the very long-run calculation con-
sidered, the cost of the building phase is likely a negligible fraction of the cost of the whole simulation.

Function evaluation is assumed to be very expensive compared to retrieve, so a fundamental quantity in developing an
understanding of ISAT performance is the probability of function evaluation pFðq;AÞ, which is defined to be the sum of the
probabilities of grow, add, and discarded evaluation, i.e.,
pFðq;AÞ � pGðq;AÞ þ pAðq;AÞ þ pDðq;AÞ ¼ 1� pRðq;AÞ: ð8Þ
104 106 108 1010
10−6

10−4

10−2

100

q

p
R

p
A

p
D

p
G

The probabilities of retrieve pR , add pA , discarded evaluation pD and grow pG at query q against the number of queries q in the PaSR calculation with
letal mechanism, with etol ¼ 1� 10�3 and A ¼ 2:0� 103. The probability of discarded evaluation is nonzero only after the table is full. The probability
s zero after the table is full, although it is drawn as a flat line for the sake of illustration. The turning point where the pA curve becomes flat indicates
nt where the ISAT table becomes full.

L. Lu et al. / Journal of Computational Physics 228 (2009) 5490–5525 5497
(Recall that each event of grow, add, or discarded evaluation involves one function evaluation.) Notice that before the ISAT
table is full, pD is zero and hence pF ¼ pA þ pG; after the table is full, pA is zero and hence pF ¼ pD þ pG. Let qf ðAÞ denote the
query on which the ISAT table becomes full. As shown in Appendix A, for a given table size A, the probability of function
evaluation pF after an infinite number of queries pFð1;AÞ is approximately equal to the probability of add when the table
becomes full, pAðqf ðAÞ;AÞ. (As revealed by the notation, pAðqf ðAÞ;AÞ depends only on A.) The empirical relation between
pAðqf ðAÞ;AÞ and A can be approximated by an inverse power law (see Eq. (A.4)).

3.2.2. Estimate of the average query time tQ

We are now ready to assemble the above insights regarding ISAT performance into a long-term prediction that is based on
current ISAT statistics. For a long-run calculation, the cost of the building phase is in general negligible, and in the retrieving
phase essentially all queries are resolved either by retrieves or by discarded evaluations. Hence in the retrieving phase, the
average CPU time for a query, tQ , can be well approximated as
Fig. 2.
mechan
query t
tQ ¼ tRpRð1;AÞ þ tF pFð1;AÞ ¼ tRð1� pFð1;AÞÞ þ tFpFð1;AÞ ¼ tR þ pFð1;AÞðtF � tRÞ; ð9Þ
where tR is the average CPU time to perform a retrieve, and tF is the average CPU time to perform a function evaluation. On
the first two lines of Eq. (9), the first terms on the right hand side are the contributions from retrieve, and the second terms
are the contributions from function evaluation. (Recall that pFð1;AÞ ¼ pDð1;AÞ.) The ideal ISAT performance is attained
when pFð1;AÞ ¼ 0, i.e., when essentially all the queries are resolved by retrieves. Under this circumstance, the average time
for a query, tQ , is equal to the retrieve time tR.

The variable tR is subject to fluctuations over the course of a calculation because it depends on the configuration of the
ISAT table as it develops. But as shown in Fig. 2, to a good approximation, tR is a constant when the table is fully developed
(i.e., after the building phase). The average CPU time for a function evaluation tF depends solely on the distribution DðxÞ from
104 105 106 107 108 109
100

101

102

103

104

q

C
PU

 ti
m

e
(μ

 s
)

t
F

t
Q

t
R

t
Q

 = t
R

 + p
F
(∞,A) (t

F
 − t

R
)

104 105 106 107 108 109
100

101

102

103

104

q

C
PU

 ti
m

e
(μ

 s
)

t
F

t
Q

t
R

t
Q

=t
R

 + p
F
(∞,A) (t

F
 − t

R
)

Average CPU time for a function evaluation tF , a query tQ , and a retrieve tR against the number of queries from the PaSR calculation with the skeletal
ism. Top plot: etol ¼ 1� 10�4 and A ¼ 6� 104; bottom plot: etol ¼ 1� 10�3 and A ¼ 2� 103. Also shown (as the gray dashed lines) are the predicted

imes using Eq. (9). In the prediction, pFð1;AÞ is estimated using the probability of add when the table becomes full (see Appendix A for more detail).

5498 L. Lu et al. / Journal of Computational Physics 228 (2009) 5490–5525
which x is drawn. To a good approximation, tF is a constant along the simulation as shown in Fig. 2. (However the CPU time
for a single function evaluation may vary significantly over the distribution DðxÞ, e.g., by an order of magnitude.) In general,
the function evaluation time tF is much larger than the retrieve time tR, e.g., by several orders of magnitude.

Fig. 2 shows the average CPU times tR and tF against the number of queries for two cases. As may be seen, to a good
approximation, both tR and tF are constant with tR � 35 ls and tF � 6� 103 ls for the first case (top plot of Fig. 2). For
the second case (bottom plot of Fig. 2), tF is the same, but because of the smaller table size, tR is reduced to less than
10 ls. For these particular cases, tF is more than two orders of magnitude larger than tR. Also plotted in the figure are the
query times from both the simulation and the prediction (for q!1) according to Eq. (9). In the prediction, pFð1;AÞ is esti-
mated using the probability of add when the table becomes full. For a large number of queries, Eq. (9) provides a reasonable
estimate (or at least asymptote) for the average query time.

3.2.3. Supercritical and subcritical ISAT regimes
One final aspect of ISAT performance remains to be discussed, which will turn out to have a significant bearing on why

different parallelization strategies are more or less effective in speeding up a given long-run simulation. With Eq. (9), two
different computational regimes can be identified, namely a supercritical regime and a subcritical regime. In the supercritical
regime, the particles can be almost always successfully retrieved from the ISAT table and the contribution from retrieve to
the query time is dominant. In contrast, in the subcritical regime, the contribution from function evaluation is dominant. For
a given ISAT task (with a given etol), which computational regime a long-run calculation is in depends solely on the allowed
table size A. To be more rigorous, we define the critical number of ISAT table entries, A�, implicitly by
pFð1;A
�Þ ¼ tR

tF � tR
: ð10Þ
Thus with A� table entries, retrieves and function evaluations contribute equally to the average query time. Given that
pFð1;AÞ is a monotonically decreasing function of A, there is a unique value of A� satisfying this equation. With this defini-
tion, the average query time can be re-expressed as
tQ

tR
¼ 1þ pFð1;AÞ

pFð1;A
�Þ : ð11Þ
Evidently the storage ratio s � A=A� determines the effectiveness of ISAT. In the supercritical regime, defined by s P 1, ISAT is
very effective and tQ=tR 6 2, i.e., within a factor of 2 of the ideal performance. In the subcritical regime, defined by s < 1, the
time spent on function evaluations is significant and tQ � pFð1;AÞtF P 2tR.

The above discussion highlights the significance of the allowed table size A to the ISAT performance. An increase in A can
effectively move the calculation from the subcritical regime to the supercritical regime, and hence greatly enhance the com-
putational efficiency of the chemistry calculation. Fig. 3 shows the average query time from two PaSR calculations with the
same settings except the allowed table size A. As may be seen, with an increase in A from 2 � 104 to 6 � 104, the average query
time decreases from about 300 ls to 100 ls, and the calculation shifts from the subcritical regime to the supercritical regime.

4. Parallel computations of turbulent combustion

In this study, the target platform for performing parallel calculations is a distributed memory system with Np processors.
For CFD of an inhomogeneous reactive flow with domain decomposition, the whole computational domain is decomposed
into Np sub-domains and each processor performs the computation for one sub-domain. In the PaSR tests considered here,
each of the Np processors is assigned its own PaSR. Message passing among the processors is performed using MPI 1.1 [36].

When ISAT is used for the combustion chemistry calculations, each processor has its own ISAT table. The same ISAT error
tolerance etol and allowed table size A are specified on each of the processors. We consider the case in which the physical
memory limits the maximum number of ISAT table entries A that can be tabulated on each processor. During the reaction
fractional step, each processor has an ensemble of particles whose compositions after the reaction step need to be deter-
mined. In other words, each processor has an ensemble of particles that needs to be resolved. For each processor, the par-
ticles originally located on the processor are referred to as local particles. In parallel computations, the following ISAT
processes can be invoked to attempt to resolve a particle:

� attempt to retrieve from the local ISAT table,
� attempt to retrieve from the ISAT tables on remote processors,
� function evaluation (through one of the events grow, add or discarded evaluation) on the local processor,
� function evaluation (through one of the events grow, add or discarded evaluation) on a remote processor.

Notice that the processes performed on remote processors incur extra message passing time. The retrieve attempts do not
guarantee to resolve a particle, whereas function evaluation does. Another important difference between these different pro-
cesses is the associated computational cost. The retrieve time may be several orders of magnitude smaller than the function
evaluation time.

104 105 106 107 108 109
101

102

103

104

q

C
PU

 ti
m

e
(μ

 s
) t

F

t
Q

t
R

2 t
R

104 105 106 107 108 109
101

102

103

104

q

C
PU

 ti
m

e
(μ

 s
)

t
F

t
Q

t
R

2 t
R

Fig. 3. Average CPU time for a function evaluation tF , a query tQ and a retrieve tR against the number of queries. Top plot: a subcritical (tQ > 2tR) case with
etol ¼ 1� 10�4 and A ¼ 2� 104; bottom plot: a supercritical (tQ < 2tR) case with etol ¼ 1� 10�4 and A ¼ 6� 104. Also shown are the gray dashed lines of 2tR .

L. Lu et al. / Journal of Computational Physics 228 (2009) 5490–5525 5499
The computational load of chemistry calculation on a processor depends strongly on the number of queries and the com-
position distribution on the processor. Load imbalance of chemistry calculations can be caused by the nonuniform distribu-
tions of queries and compositions among processors. However, it should be noted that ISAT poses a non-standard load
balancing problem that cannot be solved readily by common load balancing techniques or software due to the following
reasons:

� The unit operation to be performed (i.e., resolution of a query) takes a random, highly-variable amount of CPU time to
perform (e.g., by several orders of magnitude).

� The amount of time a query takes is not known a priori, and there is no computationally cheap test to determine how
much it will cost to resolve the query.

� The amount of time a query takes on a given processor depends on the whole history of previous queries on that proces-
sor; as a consequence, a given query can take very different times to resolve on different processors.

It should also be noted that, as stated previously, load balance is not truly the right target for optimization: wall clock
time is. The optimal algorithm that minimizes the wall clock time for the chemistry calculations may not necessarily give
the best load balance.

4.1. Effects of query and composition distributions

As mentioned, the ISAT performance depends strongly on the number of queries and the composition distributions
among different processors. Let Qa denote the number of queries on processor a. Due to the possible nonuniform distribution
of computational particles among the sub-domains, Qa may vary significantly among processors. Furthermore, due to the
possible nonuniform reaction activity among the sub-domains, the composition distribution may also vary significantly from

5500 L. Lu et al. / Journal of Computational Physics 228 (2009) 5490–5525
processor to processor. Let DaðxÞ denote the composition distribution on processor a. The two extremes that may arise in a
multi-processor calculation are: coincident query distributions, in which DaðxÞ is identical for all processors; and disjoint query
distributions, in which DbðxÞ is disjoint from DaðxÞ for all a – b.

The important concept we use to describe the similarities of the composition distribution DaðxÞ among the processors is
query overlap. Consider a parallel computation that relies on purely local processing to resolve particles using ISAT, i.e., par-
ticles are resolved using the local ISAT table without message passing and load redistribution. (This approach is denoted as
PLP/ISAT, where PLP stands for ‘‘purely local processing”.) Let bPab denote the probability that a query from processor a could
(hypothetically) be retrieved using the ISAT table on processor b. By definition bPaa denotes the probability of normal, local
retrieval. The query overlap in a calculation can be quantified by the overlap matrix L with the component Lab defined by
Fig. 4.
etol ¼ 5
CPU tim
	: resul
Lab ¼ bPab=bPaa; ð12Þ
where the summation convention does not apply. In general, when ISAT tables are built using the PLP/ISAT strategy, queries
from one processor are far more likely to be retrievable from the local ISAT table than from the ISAT tables on remote pro-
cessors. Hence it is reasonable to expect bPab 6

bPaa and therefore 0 6 Lab 6 1. For the two extremes, we have Lab ¼ 1 for coin-
cident query distributions, and Lab ¼ dab for disjoint query distributions.

Given the above, four extreme computational regimes can be identified based on the composition distributions DaðxÞ and
the number of queries Qa among the processors, namely: coincident and uniform; coincident and nonuniform; disjoint and
uniform; and disjoint and nonuniform. As the name indicates, in the coincident and uniform regime, the query distributions
among the processors are coincident and the number of queries is uniform among the processors.

The main goal of this study is to explore strategies that will result in good parallel ISAT performance, not just for one of
the four extreme computational regimes, but for all of them. For the investigation, we use the multiple PaSR test cases de-
scribed in Section 2. For the coincident cases, all the reactors have identical inflowing streams; for the disjoint cases pre-
sented, each reactor has different inflowing streams by design to make the composition distributions disjoint among the
processors. The multiple PaSR test has the advantage of simplicity in terms of controlling the distribution of particle com-
positions DðxÞ and the number of queries on each processor. Therefore it allows one to explore the ISAT performance in
the above different computational regimes.

4.2. Software x2f mpi

To parallelize ISAT, the simplest approach is PLP/ISAT in which particles are resolved using the local ISAT table without
message passing and load redistribution. However, this simple PLP/ISAT strategy is not the computationally-optimal strategy
for all chemistry calculations. In parallel calculations, even though the straightforward PLP/ISAT strategy substantially
speeds up the combustion chemistry calculations on each processor, the parallel computational efficiency of PLP/ISAT can
be severely affected by the load imbalance of chemistry calculations caused by the nonuniform distributions of queries
and compositions among processors. For example, Fig. 4 shows the wall clock time and CPU time per particle step in the reac-
tion fractional step from a nonuniform coincident PaSR calculation. (For a given processor, the wall clock time and CPU time
per particle step are defined as the total wall clock time and the total CPU time on that processor, normalized by the average
number of particles on all processors.) As may be seen, for PLP/ISAT, there is significant load imbalance due to the nonuni-
formity of queries among the processors. For the case considered, the CPU time spent by the first processor, which has the 8
1 2 3 4 5 6 7 8
0

50

100

150

200

250

Processor index, k

A
ve

ra
ge

 ti
m

e
pe

r
pa

rt
ic

le
 s

te
p(

μ
s)

The wall clock time and CPU time per particle step (in microseconds) for each processor from the nonuniform coincident PaSR calculation with
� 10�4 and A ¼ 1� 103. For a given processor, the wall clock time and CPU time per particle step are defined as the total wall clock time and the total
e on that processor normalized by the average number of queries on all processors. Solid symbol: wall clock time; open symbol: CPU time. Symbol

ts from PLP/ISAT; .: results from URAN/ISAT. The calculations result in an average of 1.9 � 108 queries per processor.

L. Lu et al. / Journal of Computational Physics 228 (2009) 5490–5525 5501
times the number of queries as the other processors, is about 6 times that on the other processors, and thus the other pro-
cessors have a significant amount of idle time. One can imagine this imbalance in query distributions being exacerbated by
nonuniform composition distributions. Yet even with uniform distributions of queries and compositions (see Fig. 8) and con-
sequently good load balance among processors, the simple PLP/ISAT strategy may still not be the optimal strategy that min-
imizes the wall clock time for the chemistry calculations.

These observations motivate the development of more sophisticated parallel ISAT strategies to further improve parallel
efficiency. The objective is to minimize the wall clock time spent in chemistry calculations. We consider the scenario where
the communication (message passing) time per particle tC is much smaller than the average function evaluation time tF . If
not, then the PLP/ISAT strategy is optimal and there is no reason to use the parallel ISAT strategies that involve message pass-
ing. Note that even when tC is small, we do not need to assume that it is entirely negligible. The main way in which we can
reduce the communication time per particle is through aggregating many small messages (e.g., individual particles) into a
larger message in order to reduce the overall latency penalty. This technique is commonly known as ‘‘message batching”,
and it is one of the keys to achieving good performance in all the software described below.

In this study, parallel ISAT algorithms are developed by developing distribution strategies to be used in combination with
serial ISAT as follows. In the parallel calculation of reactive flows, each processor has its own ISAT table. During each reaction
fractional step, the ensemble of particles to be resolved on one processor may be distributed to one or more other processors
using different distribution strategies, resolved by the ISAT tables there, then sent back to the original processor. The mes-
sage passing happens before and after the serial ISAT algorithm is invoked, not within ISAT. Different distribution strategies
have been developed and implemented in the software x2f mpi, namely, purely local processing (PLP), uniformly random
distribution (URAN), and preferential distribution (PREF). For PLP, there is no message passing in the chemistry calculations,
and particles on one processor are locally processed by the local ISAT table. For URAN, the particles in a group of processors
are randomly distributed uniformly among all the processors in the group. For PREF, the particles have preference to some
processors: that is, particles can only be passed to those processors that they have visited during a previous reaction step, or
have not yet visited during the current reaction step. (For more details about PREF, see Appendix B.) It should be noted that
the various distribution strategies can be used in combination as shown below.

Compared to the PLP strategy, the URAN and PREF strategies require message passing and hence extra message passing
time. Also these strategies may incur synchronization penalties. However, considering that passing particles among the pro-
cessors may result in much less computational cost for the resolution of particles, the strategies with message passing may
still have computational advantages over PLP as far as the wall clock time for the reaction fractional step is concerned.

Besides the above three distribution strategies, there is one additional mode called quick try (QT), in which a retrieve at-
tempt for all the particles is made based on the local ISAT table before using the distribution strategies in x2f mpi. Only the
particles unresolved by QT are passed to x2f mpi, and therefore the number of particles requiring message passing can be
dramatically reduced.

Fig. 5 illustrates how parallel ISAT strategies are used in calculations of reactive flows. In a parallel calculation with Np

processors, with domain decomposition the whole solution domain is divided into Np sub-domains and each processor per-
forms the computation of one sub-domain. During the reaction fractional step, each sub-domain has an ensemble of particles
to be resolved. At the start of each reaction fractional step, QT may be invoked depending on the user’s setting. Then all the
particles unresolved by QT are partitioned into one or more blocks. The blocks are looped and each block of particles is dis-
tributed among some or all of the processors based on the distribution strategy specified, and resolved using the ISAT tables
there. This process continues until the particles in all the blocks are resolved. We refer to the processes to resolve each block
of particles (i.e., the processes inside the ‘‘loop over blocks” in Fig. 5) as a ‘‘block sub-step”. As illustrated in Fig. 5, during each
block sub-step, the particles in the blocks are redistributed by x2f mpi among the processors, resolved there, and then passed
back to the original processors.

The number of blocks required depends on the available physical memory and the amount of data in the unresolved par-
ticles. This is because temporary storage is required, the amount of which scales linearly with the block size. In general, to
minimize interprocessor communication, the size of each block should be large. As mentioned earlier, passing particles
among processors in small blocks or even singly increases the overall latency penalty. The use of numerous small blocks also
increases the likelihood of synchronization delays. For small or medium scale calculations, a single block is in general
sufficient.
5. Parallel ISAT with fixed distribution strategies

5.1. Parallel ISAT strategies: PLP/ISAT and URAN/ISAT

For parallel evaluation of ensembles of particles with ISAT, purely local processing (PLP) lies at one extreme of the range
of possible strategies, because it has no message passing and no load redistribution: by definition, PLP/ISAT uses only the
local ISAT tables. At the other extreme is URAN/ISAT, which combines uniform random distribution (URAN) with ISAT. In this
strategy, during the reaction fractional step, the particles on each processor are randomly distributed uniformly (to within
one particle) among all of the processors in the simulation, so that each processor has an equal number of particles to
process. The major characteristics of the two extreme ISAT strategies are as follows:

Fig. 5. Sketch showing the use of the parallel ISAT algorithm in a calculation of a reactive flow with Np processors. With domain decomposition, the whole
solution domain is divided into Np sub-domains and each processor performs the computation of one sub-domain. The bottom subplot illustrates the
processes in each block sub-step, where the particles in the blocks are redistributed by x2f_mpi among the processors, resolved there, and then passed back
to the original processors.

5502 L. Lu et al. / Journal of Computational Physics 228 (2009) 5490–5525
� PLP/ISAT: no message passing; the local ISAT table depends on the local particle composition distribution DkðxÞ; load
imbalance is possible due to the nonuniform intensity of chemical reactions or nonuniform distribution of computational
particles.

� URAN/ISAT: much message passing; the ISAT tables on the Np processors are statistically identical (and independent) and
depend on the union of the composition distributions on all the processors, i.e., [aDaðxÞ; the load balancing is perfect.

Fig. 4 shows the measured wall clock time and CPU time per particle step in the reaction fractional step from the nonuni-
form, coincident PaSR calculation, in which the first processor has 8 times the number of particles as the other processors. Due
to the nonuniform distribution of the number of particles among the processors, the PLP/ISAT strategy exhibits a significant

1 2 3 4 5 6 7 8
10−6

10−4

10−2

100

Processor index

N
or

m
al

iz
ed

 n
um

be
r

of
 o

pe
ra

tio
ns

queries
retrieves
function evaluations

1 2 3 4 5 6 7 8
10

−6

10−4

10−2

100

Processor index

N
or

m
al

iz
ed

 n
um

be
r

of
 o

pe
ra

tio
ns

queries
retrieves
function evaluations

Fig. 6. Normalized number of operations for different events performed by ISAT on each processor from the nonuniform coincident PaSR calculations with
etol ¼ 5� 10�4 and A ¼ 1� 103. The number of operations is normalized by the average number of queries among all the processors. Left plot: PLP/ISAT;
right plot: URAN/ISAT. Symbol 	: queries; �: retrieves; �: function evaluations. The calculations result in an average of 1.9 � 108 queries per processor.

L. Lu et al. / Journal of Computational Physics 228 (2009) 5490–5525 5503
load imbalance. However, in the URAN/ISAT strategy, by using the load redistribution among the processors, good load balanc-
ing is achieved. This is confirmed in Fig. 6 which shows the number of different operations in ISAT on each processor given by
the two different parallel ISAT strategies. For the PLP/ISAT strategy, the first processor has a larger number of queries to resolve,
so the computation on this processor becomes the bottleneck of the whole simulation. In contrast, the URAN/ISAT strategy dis-
tributes the work evenly among all the processors. Compared to PLP/ISAT, even with the extra time spent in message passing,
URAN/ISAT achieves a parallel speed-up factor of 2.4 for this particular case as far as the wall clock time is concerned. For this
case, the average message passing time (two-way) per particle, tC , is in the same order as retrieve time and tC � 16 ls. The
message passing time is measured by passing particles using x2f mpi without performing any computational work.

Although the URAN/ISAT strategy guarantees good load balancing among processors, and in some computational regimes
it achieves better performance than the PLP/ISAT strategy, this simple URAN/ISAT strategy is in general not the optimal strat-
egy for minimizing the wall clock time. In the following, more sophisticated strategies are proposed based on the ideas of
domain decomposition in composition space or a multi-stage process.

5.2. Domain decomposition in composition space

One reason that the chemistry computations can be subject to a load imbalance is that the particles are primarily assigned to
processors based on their positions in physical coordinate space, rather than on any chemical properties. Thus, if the spatial
distribution of particles is nonuniform, so is the computational load. It would therefore seem advantageous to define a different
domain decomposition to apply to particles during the reaction fractional step, in order to group together particles of similar
composition on the same processor. Each processor may then proceed to develop a specialized ISAT table that is particularly
effective in evaluating its assigned types of particles. Even though this strategy necessarily involves substantial communica-
tion, comparable perhaps to URAN, the resulting enhancement in the probability of retrieve pR may more than compensate for
the penalty of constantly shuttling large numbers of particles between physical and compositional sub-domains.

In practice such a strategy turns out to be problematic, because by definition ISAT tables evolve as a simulation pro-
gresses, and they evolve in different ways when they tabulate different parts of the composition space. For example, if
the composition space for a combustion process is partitioned according to mixture fraction, then some processors will col-
lect particles that are either mostly air or mostly fuel. These particles undergo little or no reaction at all, and their final states
are quickly tabulated. Other processors will gather ‘‘burning particles” whose final states may depend sensitively on their
initial states. Such particles are difficult to tabulate completely, resulting in many grow and add operations. Even when
the mixture-fraction partitions are allowed to adjust dynamically, the outcome is that large numbers of retrieves on some
processors must be balanced against comparatively few function evaluations on other processors. This balance turns out
to be rather difficult to achieve, because on the processors that receive ‘‘burning particles”, statistical variations as well as
systematic changes in the numbers of grow and add operations during a given step will continually throw off the expected
workload. Therefore, the strategy of domain decomposition in composition space was deemed to be less than optimal at an
early stage in this work [21,22].

5.3. Multi-stage process

As mentioned in Section 4, various ISAT processes can be invoked in attempting to resolve particles: retrieve attempt from
the local ISAT table; retrieve attempt from the ISAT table on a remote processor; function evaluation on the local processor;

5504 L. Lu et al. / Journal of Computational Physics 228 (2009) 5490–5525
function evaluation on a remote processor. In the multi-stage procedure, a sequence of the above different processes is in-
voked across all processors in attempting to resolve particles with the minimum computational cost (i.e., the minimum wall
clock time). The computationally cheap processes (e.g., retrieve attempts) are tried first: if the retrieve attempts fail, then
computationally more expensive processes (e.g., function evaluations) are invoked to resolve particles. At each stage in a
multi-stage process, a different distribution strategy such as URAN or PREF can be used to redistribute the unresolved par-
ticles among the processors.

It is significant to note that at each stage the ISAT processes with comparable computational cost are employed among
the processors, e.g., either all perform retrieve attempts or all use function evaluations. This is necessary due to the difficulty
previously encountered in balancing huge numbers of retrieve attempts against a few function evaluations, as described in
the preceding subsection. Consequently good load balancing is in general achieved at each stage and therefore in the chem-
istry calculations among the processors.

5.4. Multi-stage parallel ISAT strategies: QT/URAN/ISAT and PREF/URAN/ISAT

The simplest parallel ISAT strategy that employs the multi-stage process idea is called QT/URAN/ISAT, where QT stands
for ‘‘quick try”. During the reaction step, in the QT stage, a retrieve attempt for particles is made based on the local ISAT table;
then in the URAN stage, the particles unresolved by QT are randomly distributed uniformly among all the processors and are
resolved there either by retrieves or by function evaluations. Note that in QT/URAN/ISAT, the ISAT table that develops on
each processor is statistically identical and depends on the union of the composition distributions on all the processors
(as in URAN/ISAT). This is because only the URAN stage affects the ISAT table building on each processor, and in this stage
all the unresolved particles are independent and identically distributed (i.i.d.) among all the processors.

In QT/URAN/ISAT, by performing QT on the local ISAT table, most particles are successfully resolved, hence the number of
the particles that need to be redistributed by URAN is substantially reduced, and so also is the message passing time. Fur-
thermore, the QT/URAN/ISAT strategy puts more effort into trying computationally cheap retrieve attempts: queries that
cannot be resolved by retrieves from the local ISAT table experience another retrieve attempt from another ISAT table on
another processor instead of directly resorting to the computationally expensive function evaluation.

Notice that in PLP/ISAT, URAN/ISAT and QT/URAN/ISAT strategies, for each particle, retrieve attempts are made on only
one or (at most) two processors. Recall that the computational cost of a function evaluation is several orders of magnitude
larger than that of a retrieve. Computationally it may be worthwhile to put more effort into sending the particles among the
processors and trying more attempts of retrieve. If particles can be resolved by retrieves instead of function evaluations, the
wall clock time for resolving particles may still be smaller, even at the expense of extra message passing and retrieve
attempts.

Based on the above reasoning, another parallel ISAT strategy, denoted as PREF ðnrÞ/URAN/ISAT, is developed, which allows
for more retrieve attempts. In this strategy, for each particle, retrieve attempts are made on at most nr processors, where
nr 6 Np is a user-specified parameter. Specifically, during each of the nr retrieve stages, a retrieve attempt is made for unre-
solved particles; then particles resolved by this retrieve attempt are passed back to the original processor; and the remaining
unresolved particles are passed to another processor using PREF for another retrieve attempt in the next retrieve stage. The
same process continues until all particles have been resolved, or the number of retrieve attempts reaches the designated
number nr . In the URAN stage, all the unresolved particles are randomly distributed uniformly among all the processors
and are resolved there by retrieves or function evaluations. (As discussed in Appendix B, in the first retrieve attempt, if
the number of particles to be resolved is uniform or close to uniform among the processors, PREF forces the particles to
try the first retrieve attempt from their local ISAT table; otherwise if the number of particles among the processors are sig-
nificantly nonuniform, PREF distributes particles uniformly among the processors and the first retrieve attempt for particles
is not necessarily made on the local ISAT table.) In PREF ðnrÞ/URAN/ISAT, the ISAT tables on the processors are statistically
identical (but not independent) and depend on the union of all the composition distributions on all the processors. This is
because only the URAN stage affects the ISAT table building on each processor and in this stage all the unresolved particles
are independent and identically distributed (i.i.d.) among all the processors. However, an important observation is that the
ISAT tables are not independent. This is because the compositions added to one table are those that could not be resolved on
the nr processors visited.

It is worth mentioning that the URAN/ISAT strategy described before is actually a special case (with nr ¼ 0) of the whole
class of PREF/URAN/ISAT strategies. If the number of particles to be resolved is uniform or close to uniform among the pro-
cessors, PREF(1)/URAN/ISAT performs similarly to QT/URAN/ISAT.

Fig. 7 shows the measured wall clock time and CPU time per particle step from the uniform, coincident PaSR calculations.
For this particular case, with the PLP/ISAT strategy, each processor has a significant fraction of function evaluations (about
1.2%). In contrast, with the multi-stage process, the QT/URAN/ISAT and PREF(8)/URAN/ISAT strategies make more retrieve
attempts, and the wall clock time decreases (by factors of 1.5 and 2.7, respectively) even though there is more message pass-
ing and unsuccessful retrieve attempts. This is because more particles are resolved by cheap retrieves instead of expensive
function evaluations. This is confirmed by the recorded number of different operations in ISAT on each processor from the
three different parallel ISAT strategies. On each processor, the fractions of function evaluations for QT/URAN/ISAT and
PREF(8)/URAN/ISAT are about 0.9% and 0.5%, respectively. Compared to PLP/ISAT, PREF(8)/URAN/ISAT achieves a parallel
speed-up factor of about 3 for this particular case.

1 2 3 4 5 6 7 8
0

100

200

300

400

500

600

Processor index, k

A
ve

ra
ge

 ti
m

e
pe

r
pa

rt
ic

le
 s

te
p(

μ
s)

Fig. 7. Wall clock time and CPU time per particle step (in microseconds) for each processor from the uniform coincident PaSR calculations with
etol ¼ 1� 10�4 and A ¼ 2� 103. Solid symbol: wall clock time; open symbol: CPU time. Symbol 	: PLP/ISAT; /: QT/URAN/ISAT; }: PREF(8)/URAN/ISAT. The
calculations result in an average of 1.0 � 108 queries per processor.

L. Lu et al. / Journal of Computational Physics 228 (2009) 5490–5525 5505
6. Adaptive parallel ISAT strategy

As found in [21,22], none of the parallel ISAT implementations with fixed distribution strategies consistently achieves
good performance in all the computational regimes. The optimal distribution strategy depends on the computational regime
a calculation is in. To address this challenge, an adaptive parallel ISAT strategy is developed, in which the distribution strat-
egy is determined on the fly based on a prediction of future calculation time in combustion chemistry, drawing on the results
obtained in Section 3. The adaptive strategy is developed based on assumed statistical stationarity (at least approximately) of
a calculation.

6.1. Overview

When applying the adaptive parallel ISAT strategy for a reactive flow calculation, the number of processors Np must be an
integer power of 2, and each processor maintains its own ISAT table. At the beginning of the simulation, the adaptive strategy
involves up to Ms pairing stages with Ms ¼ log2ðNpÞ. Initially the Np processors in the simulation are partitioned into Ng ¼ Np

groups, with each group containing a single processor. In each pairing stage, the simulation runs until either (a) the ISAT
tables on all the processors are ‘‘fully developed” (as described in Appendix C), or (b) the number of table entries in all
the tables in one of the groups reaches a specified fraction of the number of allowed table entries. Then, based on a prediction
of future calculation time, the adaptive strategy either maintains the existing grouping or forms a new grouping by pairing
all of the existing groups. Thus the number of processors g in each group may double after each pairing stage. If a pairing of
groups is performed at every pairing stage, then after the Ms-th stage there is only a single group containing all processors in
the simulation.

With the adaptive ISAT strategy, at any given moment, the simulation has Ng group(s) with g ¼ Np=Ng processor(s) in each
group. During the reaction step, the following processes are invoked to resolve particles:

� Retrieve attempt(s). The ensemble of particles from each group is distributed among the processor(s) within the group and
retrieve is attempted using one or more tables within the group. The distribution strategy employed is the preferential
distribution (PREF). The maximum number of retrieve attempts for the unresolved particles is the number of processors
in the group, g. Synchronization within each group occurs after each retrieve attempt.

� Function evaluation (through the events grow, add or discarded evaluation). Those particles that have not been resolved
by retrieves, are randomly distributed evenly using the URAN strategy either within each group or among all the proces-
sors in the simulation. The unresolved particles are distributed among all the processors in the simulation to achieve good
load balancing in workload only if the following conditions are satisfied: all the m pairing stages have been performed;
and all of the ISAT tables on all the processors are fully developed. Otherwise, the unresolved particles are distributed
evenly among the processors in each group so that ISAT tables can continue to be developed based on queries from within
the group.

It is worth mentioning some extreme limits of the adaptive strategy. If no group pairing is performed in any pairing stage,
then after the mth stage, there are still Np groups with each containing a single processor. In this limit, if the unresolved par-
ticles are not distributed evenly among all the processors in the simulation during the URAN stage, the adaptive parallel ISAT

5506 L. Lu et al. / Journal of Computational Physics 228 (2009) 5490–5525
strategy is equivalent to the PLP/ISAT strategy. At the other extreme, if the pairing of groups is performed in every pairing
stage, then there is only one single group containing all the processors in the simulation after the pairing stages. In this limit,
after all of the ISAT tables are fully developed, the adaptive parallel ISAT strategy mimics the PREF/URAN/ISAT strategy with
up to Np retrieve attempts. (There are subtle differences due to the difference in building the ISAT tables.)

In the following, we elaborate on the grouping algorithm.

6.2. Grouping algorithm

The adaptive strategy involves up to Ms ¼ log2ðNpÞ pairing stages. During the Lth pairing stage (with 1 6 L 6 Ms), the sim-
ulation has Ng groups of processors and the number of processors in each group is gð¼ Np=Ng 6 2L�1Þ. For the L-th stage, the
simulation runs until (a) the ISAT tables on all the processors are fully developed or (b) the number of table entries on each
processor of one group reaches a�L , where a�L is the maximum number of table entries allowed on each processor during the
Lth stage. In the current implementation, a�L is specified as
a�L ¼ A�
1
2

� �1 þ 1
2

� �2 þ � � � 1
2

� �L
h i

¼ 1� 1
2

� �L if 1 6 L < Ms

1 if L ¼ Ms

(
: ð13Þ
At the end of the Lth stage, either

1. the existing grouping is maintained (so that Ng is unchanged), or
2. a new grouping is formed by pairing all existing groups (so that Ng is halved).

It is worth mentioning that the above specification of a�L is tentative. Exploring other specifications and identifying the
optimal one are certainly necessary and important for further improving the adaptive strategy.

The decision on whether and how to perform pairings is based on an estimation of wall clock time per block sub-step for a
very long-run simulation assuming the use of all the allowed table entries. We denote by T 0i the estimated time for group i to
accomplish the combustion chemistry calculations required in a block sub-step (in a long-run simulation using all of the
allowable table entries) when the groups remain unpaired. Then the estimated wall clock time per block sub-step for the
simulation, with the assumption of no pairing, is
T 0np ¼maxðT 0iÞ: ð14Þ
We denote by T 0ij the estimated time per block sub-step (for one block of particles for a long-run simulation using all of the
allowable table entries) for the hypothetical pairing of groups i and jði – jÞ. The pairing of the existing groups is not unique.
Let Pk denote the kth possible pairing, and the estimated wall clock time per block sub-step for the pairing is
T 0p;k ¼ max
ði;jÞ2Pk

T 0ij
� �

; ð15Þ
where ði; jÞ 2 Pk denotes all the pairs of groups (i and j) in the pairing Pk. The optimal pairing among the groups is the pairing
with the minimum value of T 0p;k. (See Appendix D for more details about the algorithm for determining the optimal pairing.)
The estimated wall clock time per block sub-step for the simulation with the optimal pairing is
T 0p ¼min
k
ðT 0p;kÞ: ð16Þ
If T 0p is less than T 0np, the optimal pairing is used to form the new grouping for the next stage, and the number of processors in
each group doubles. Otherwise, the existing grouping is maintained.

The details of how the estimates T 0i and T 0ij are made are in Appendix E.

7. Investigation of different parallel ISAT strategies in extreme computational regimes

Here we focus on investigating the relative performance of different parallel ISAT strategies in different extreme compu-
tational regimes: namely, coincident and disjoint query distributions both with uniform and nonuniform numbers of que-
ries. These extreme circumstances correspond to extreme nonuniform distributions of reaction activity and
computational particles among the sub-domains. The parallel ISAT strategies investigated here are PLP/ISAT, URAN/ISAT,
QT/URAN/ISAT, PREF(8)/URAN/ISAT and the adaptive strategy. The decisions of the adaptive strategy in each stage for each
case considered are listed in Table 1.

7.1. Coincident query distributions, uniform number of queries

In this regime, the composition distributions DðxÞ are identical among the processors. Suppose that the chemistry calcu-
lation is performed locally, i.e., without message passing and load redistribution among the processors. As in Section 3, we can
define a critical number of table entries A�, which is identical on each processor. Based on A� and the number of processors Np,
this regime can be further categorized as

Table 1
Decision of adaptive strategy in each stage for different cases.

Case Stage 1 Stage 2 Stage 3

Particle distribution Composition distribution etol A

Uniform Coincident 8� 10�4 2000 Pair Pair Not pair
Uniform Coincident 5� 10�4 1000 Pair Pair Not pair
Uniform Coincident 1� 10�4 2000 Pair Pair Pair
Nonuniform Coincident 8� 10�4 2000 Pair Pair Pair
Nonuniform Coincident 5� 10�4 1000 Pair Pair Pair
Nonuniform Coincident 1� 10�4 2000 Pair Pair Pair
Uniform Disjoint 8� 10�4 2000 Not pair Not pair Not pair
Uniform Disjoint 5� 10�4 1000 Pair Pair Not pair
Uniform Disjoint 1� 10�4 2000 Pair Pair Not pair
Nonuniform Disjoint 8� 10�4 2000 Not pair Not pair Not pair
Nonuniform Disjoint 5� 10�4 1000 Pair Not pair Not pair
Nonuniform Disjoint 1� 10�4 2000 Pair Pair Pair

L. Lu et al. / Journal of Computational Physics 228 (2009) 5490–5525 5507
� Locally supercritical. The table size is locally supercritical if A > A�. In this regime, the ISAT table on each processor is very
effective, and the particles can almost always be successfully retrieved from the local ISAT table. Thus, the PLP/ISAT strat-
egy is almost certainly optimal among all the ISAT strategies.

� Locally subcritical but globally supercritical. The table size is defined to be globally supercritical if the product NpA > A�.
This means that, among all the processors there is sufficient storage to tabulate the most-accessed compositions in the
simulation. This can hold true even if the table size is locally subcritical, i.e., one can have A�=Np < A < A�. For this regime,
a multi-stage strategy should be more efficient than PLP/ISAT; the latter will require many more function evaluations that
can be avoided by using multi-stage retrieves from other processors.

� Globally subcritical. The table size is globally subcritical if the product NpA < A�. Again PLP/ISAT is inefficient because a
substantial number of function evaluations will be required. However, the wall clock time can still be substantially
reduced by attempting to retrieve from more ISAT tables on other processors, even if many of the attempts are
unsuccessful.

Fig. 8 shows the results from the calculations of the uniform coincident PaSR cases with different specifications of the
ISAT error tolerance and the allowed number of ISAT table entries. The calculations from the top to the bottom in the figure
are designed to be from relatively easy to hard by varying etol and A. Consequently, as shown, for the PLP/ISAT strategy, the
normalized number of function evaluations gradually increases from the top to the bottom.

For all the cases considered here, URAN/ISAT gives comparable CPU time to PLP/ISAT, but requires a little more wall clock
time because of message passing. With quick try, QT/URAN/ISAT substantially improves the performance (by more than 30%)
compared to URAN/ISAT. The easiest case investigated here is close to the locally supercritical regime, and the ISAT table on
each processor is sufficiently effective. Thus the performance of PLP/ISAT is comparable (within 20%) to the other parallel
ISAT strategies (i.e., QT/URAN/ISAT, PREF/URAN/ISAT and the adaptive strategy). However, as the problem becomes harder,
the performance of PLP/ISAT becomes worse. This is simply because the PLP/ISAT strategy does not take advantage of ISAT
tables on other processors, thus it results in a relatively large number of function evaluations. For the hardest problem inves-
tigated here, the wall clock time by PLP/ISAT is about 3 times that of PREF(8)/URAN/ISAT or of the adaptive strategy. Another
observation is that PREF(8)/URAN/ISAT and the adaptive strategy yield comparable performance (within 5%) for the cases
considered here. In this regime, the adaptive strategy performs pairing twice for the two relatively easy cases and three times
for the hardest case.

7.2. Coincident query distributions, nonuniform number of queries

In this regime the major factor affecting the computational efficiency is the load balancing issue due to the nonuniform
number of queries among the processors. For the cases presented below, the first processor has 8 times the number of par-
ticles as the other processors. Similar to the uniform coincident regime, this regime can be further categorized as: locally
supercritical, globally supercritical or globally subcritical. Now, even in the locally supercritical regime, due to the load
imbalance, PLP/ISAT is not necessarily optimal among all the ISAT strategies.

Fig. 9 shows the results from calculations of nonuniform coincident PaSR cases with different specifications of the error
tolerance and of the number of ISAT table entries allowed. Again, the calculations from the top to the bottom run from rela-
tively easy to hard, as evidenced by the fact that the probability of function evaluations in PLP/ISAT gradually increases. In this
regime, due to the nonuniform distribution of particles among the processors, the PLP/ISAT strategy exhibits a significant load
imbalance and performs poorly: the first processor takes much more CPU time than the other processors, so the other proces-
sors have substantial idle time. The performance of PLP/ISAT worsens as the problem becomes harder. As expected, the strat-
egies with load redistribution among the processors significantly improve the computational performance. For example, even
for the easiest case, URAN/ISAT, PREF(8)/URAN/ISAT and the adaptive strategy achieve comparable performance, which is

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

Processor index

A
ve

ra
ge

 ti
m

e
pe

r
pa

rt
ic

le
 s

te
p

(μ
 s

)

1 2 3 4 5 6 7 8
10−6

10−4

10−2

100

Processor index

N
or

m
al

iz
ed

 n
um

be
r

of
 o

pe
ra

tio
ns

queries
retrieves
function evaluations

1 2 3 4 5 6 7 8
0

20

40

60

80

100

120

Processor index

A
ve

ra
ge

 ti
m

e
pe

r
pa

rt
ic

le
 s

te
p

(μ
 s

)

1 2 3 4 5 6 7 8
10−6

10−4

10−2

100

Processor index

N
or

m
al

iz
ed

 n
um

be
r

of
 o

pe
ra

tio
ns

queries
retrieves
function evaluations

1 2 3 4 5 6 7 8
0

100

200

300

400

500

600

Processor index

A
ve

ra
ge

 ti
m

e
pe

r
pa

rt
ic

le
 s

te
p

(μ
 s

)

1 2 3 4 5 6 7 8
10−6

10−4

10−2

100

Processor index

N
or

m
al

iz
ed

 n
um

be
r

of
 o

pe
ra

tio
ns

queries
retrieves
function evaluations

Fig. 8. For the uniform coincident PaSR tests, figure showing the performance of different parallel ISAT strategies. Top plots: etol ¼ 8� 10�4 and A ¼ 2� 103;
middle plots: etol ¼ 5� 10�4 and A ¼ 1� 103; bottom plots: etol ¼ 1� 10�4 and A ¼ 2� 103. Left column: wall clock time (solid symbols) and CPU time
(open symbols) in the reaction fractional step (in microseconds per particle step) for each processor. Symbol 	: PLP/ISAT; .: URAN/ISAT; /: QT/URAN/ISAT;
}: PREF(8)/URAN/ISAT; �: adaptive. Right column: normalized number of operations for different events performed by ISAT on each processor from PLP/
ISAT. Symbol 	: queries; �: retrieves; �: function evaluations. Each calculation results in an average of 1.0 � 108 queries per processor.

5508 L. Lu et al. / Journal of Computational Physics 228 (2009) 5490–5525
about 80% faster than PLP/ISAT. (For this highly nonuniform case, PREF(8)/URAN/ISAT and the adaptive strategy uniformly
distribute particles among processors even in the first retrieve attempt.) Also, as shown for the easiest case, QT/URAN/ISAT
gives poor performance (similar to PLP/ISAT), and is notably worse than URAN/ISAT. This is due to the load imbalance in
the quick try mode, and is in contrast to the beneficial effect of QT in the uniform case (Fig. 8). As the problem gets harder

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

Processor index

A
ve

ra
ge

 ti
m

e
pe

r
pa

rt
ic

le
 s

te
p

(μ
 s

)

1 2 3 4 5 6 7 8
10−6

10−4

10−2

100

Processor index

N
or

m
al

iz
ed

 n
um

be
r

of
 o

pe
ra

tio
ns

queries
retrieves
function evaluations

1 2 3 4 5 6 7 8
0

50

100

150

200

250

Processor index

A
ve

ra
ge

 ti
m

e
pe

r
pa

rt
ic

le
 s

te
p

(μ
 s

)

1 2 3 4 5 6 7 8
10−6

10−4

10−2

100

Processor index

N
or

m
al

iz
ed

 n
um

be
r

of
 o

pe
ra

tio
ns

queries
retrieves
function evaluations

1 2 3 4 5 6 7 8
101

102

103

104

Processor index

A
ve

ra
ge

 ti
m

e
pe

r
pa

rt
ic

le
 s

te
p

(μ
 s

)

1 2 3 4 5 6 7 8
10−6

10−4

10−2

100

Processor index

N
or

m
al

iz
ed

 n
um

be
r

of
 o

pe
ra

tio
ns

queries
retrieves
function evaluations

Fig. 9. For the nonuniform coincident PaSR tests, figure showing the performance of different parallel ISAT strategies. Top plots: etol ¼ 8� 10�4 and
A ¼ 2� 103; middle plots: etol ¼ 5� 10�4 and A ¼ 1� 103; bottom plots: etol ¼ 1� 10�4 and A ¼ 2� 103. Left column: wall clock time (solid symbols) and
CPU time (open symbols) in the reaction fractional step (in microseconds per particle step) for each processor. Symbol 	: PLP/ISAT; .: URAN/ISAT; /: QT/
URAN/ISAT; }: PREF(8)/URAN/ISAT; �: adaptive. Right column: normalized number of operations for different events performed by ISAT on each processor
from PLP/ISAT. Symbol 	: queries; �: retrieves; �: function evaluations. Each calculation results in an average of 1.0 � 108 queries per processor.

L. Lu et al. / Journal of Computational Physics 228 (2009) 5490–5525 5509
and the contribution of function evaluations becomes significant, compared to PLP/ISAT and URAN/ISAT, the performance of
QT/URAN/ISAT is significantly improved due to the extra retrieve attempt, which results in more particles being resolved by
cheap retrieves.

Also as the problem gets harder, PREF(8)/URAN/ISAT and the adaptive strategy show greater advantages over URAN/ISAT
and QT/URAN/ISAT which attempt to retrieve from only one or two (at most) tables. As can be seen from Table 1, in this

5510 L. Lu et al. / Journal of Computational Physics 228 (2009) 5490–5525
regime, for all three cases considered, the adaptive strategy performs pairing three times and there is only one single
group containing all 8 processors after the pairing stages. For all three cases considered, PREF(8)/URAN/ISAT and the adap-
tive strategy yield similar performance, and for the hardest case, they yield a speed-up factor of about 30 compared to PLP/
ISAT.

7.3. Disjoint query distributions, uniform number of queries

The essential feature of having disjoint query distributions is that an ISAT table built on one processor using PLP/ISAT has
no value in enabling queries from other processors to be retrieved. Also the function evaluation time may vary significantly
from processor to processor. When using the PLP/ISAT strategy, load imbalance may arise due to the nonuniform reaction
activity among the processors.

Fig. 10 shows the results from the calculations of the uniform disjoint PaSR cases with different specifications of the error
tolerance and of the number of ISAT table entries allowed. Again, the calculations from the top to the bottom run from rel-
atively easy to hard, as evidenced by the fact that the probability of function evaluations in PLP/ISAT gradually increases. For
the disjoint cases considered here, the conditions of inflowing streams for each reactor are set so that each reactor has in-
tense reaction. However, particle compositions on each reactor come from different parts of the composition space and there
is no overlap. In this regime, as may be seen from the figure, PLP/ISAT yields relatively good performance since an ISAT table
only processes the local particles and only tabulates a particular part of composition region based on the local particles. In
contrast, the URAN/ISAT strategy needs to tabulate a much wider composition region in each table with limited memory
since each processor can encounter some particles from other processors. As may be seen, the performance of URAN/ISAT
becomes very poor (about 4 times slower than PLP/ISAT) for the hardest problem considered here. Similarly, QT/URAN/ISAT
performs poorly for all the cases considered. The figure also shows that PREF(8)/URAN/ISAT performs poorly, especially for
the relatively easy cases. The reason is similar to the one for URAN/ISAT: it needs to tabulate a wider composition region on
each table with limited memory.

Another important observation is that in this regime, by properly grouping processors and possibly taking advantage of
ISAT table(s) from other processor(s), the adaptive strategy shows consistently good performance for all three cases consid-
ered here. For the easiest case, no pairing is performed (see Table 1) and the adaptive strategy approaches the PLP/ISAT limit.
For the two relatively difficult cases considered, the adaptive strategy performs pairing in the first two pairing stages.

7.4. Disjoint query distributions, nonuniform number of queries

The nonuniform disjoint cases are constructed by specifying the first processor to have 8 times the number of particles as
the other processors with the stream settings being the same as the uniform disjoint cases. The calculations from the top to
the bottom in Fig. 11 again run from relatively easy to hard.

Fig. 11 shows the results from the calculations of the nonuniform disjoint PaSR cases with different specifications of the
error tolerance and the number of table entries allowed. In this regime, as may be seen from the figure, PLP/ISAT, URAN/ISAT,
and QT/URAN/ISAT generally have poor performance. In contrast, PREF(8)/URAN/ISAT generally yields the best performance.
For the easiest case considered, PREF(8)/URAN/ISAT outperforms the other three strategies by saving 25% to 35% wall clock
time. Another key observation is that the performance of the adaptive strategy gradually improves when the problem be-
comes harder. For the easiest case, no pairing is performed in the adaptive strategy and it achieves performance comparable
to PLP/ISAT. As the problem becomes harder, to distribute the expensive function evaluations among the processors and
speed up the calculation, the adaptive strategy performs pairing once for the intermediate case and three times for the hard-
est case, respectively. For the hardest case considered, the adaptive strategy slightly outperforms PREF(8)/URAN/ISAT and
both are about 3 and 4 times faster than URAN/ISAT and PLP/ISAT, respectively.

As mentioned, for the easiest case, no pairing is performed in the adaptive strategy. Throughout the calculation, ISAT ta-
bles are not fully developed based on the current criterion adopted. Based on the current procedure for the URAN stage (see
Section 6.1), during the URAN stage, expensive function evaluations are performed locally without redistribution among the
processors. (For this case, the adaptive strategy is equivalent to PLP/ISAT.) This significantly degrades the performance due to
the load imbalance of expensive function evaluations in the URAN stage as shown in Fig. 11. To determine the optimal pro-
cedure for the URAN stage and hence to further improve the adaptive strategy is left to future work.

To further investigate whether or not the adaptive strategy makes the right pairing decision for this easiest case, the fol-
lowing three calculations are performed, where forced pairing is made at the first pairing stage, at both first and second pair-
ing stages, and at all three pairing stages. The calculations then continue to run with the forced pairing for a sufficiently long
time. Fig. 12 shows the performance of these three calculations together with the performance of the adaptive strategy
(which results in no pairing). As shown, the computational performance degrades as more pairings are performed, which
implies that the adaptive strategy makes the right pairing decision for this easiest case.

Another interesting observation is that the performance of the calculation with three forced pairings is much worse than
that of PREF(8)/URAN/ISAT. Recall that the only differences in the calculations with three forced pairings and with PREF(8)/
URAN/ISAT are due to the difference in building the tables. This implies that the performance of a particular parallel ISAT strat-
egy may strongly depend on how the ISAT tables are built among the processors. To understand the effect of table building and
hence to further improve the adaptive strategy is left to future work.

1 2 3 4 5 6 7 8
0

20

40

60

80

100

120

Processor index

A
ve

ra
ge

 ti
m

e
pe

r
pa

rt
ic

le
 s

te
p

(μ
 s

)

1 2 3 4 5 6 7 8
10−6

10−4

10−2

100

Processor index

N
or

m
al

iz
ed

 n
um

be
r

of
 o

pe
ra

tio
ns

queries
retrieves
function evaluations

1 2 3 4 5 6 7 8
0

20

40

60

80

100

120

140

160

180

Processor index

A
ve

ra
ge

 ti
m

e
pe

r
pa

rt
ic

le
 s

te
p

(μ
 s

)

1 2 3 4 5 6 7 8
10−6

10−4

10−2

100

Processor index

N
or

m
al

iz
ed

 n
um

be
r

of
 o

pe
ra

tio
ns

queries
retrieves
function evaluations

1 2 3 4 5 6 7 8
0

500

1000

1500

2000

2500

Processor index

A
ve

ra
ge

 ti
m

e
pe

r
pa

rt
ic

le
 s

te
p

(μ
 s

)

1 2 3 4 5 6 7 8
10−6

10−4

10−2

100

Processor index

N
or

m
al

iz
ed

 n
um

be
r

of
 o

pe
ra

tio
ns

queries
retrieves
function evaluations

Fig. 10. For the uniform disjoint PaSR tests, figure showing the performance of different parallel ISAT strategies. Top plots: etol ¼ 8� 10�4 and A ¼ 2� 103;
middle plots: etol ¼ 5� 10�4 and A ¼ 1� 103; bottom plots: etol ¼ 1� 10�4 and A ¼ 2� 103. Left column: wall clock time and CPU time in reaction fractional
step (in microseconds per particle step) for each processor. Solid symbol: wall clock time; open symbol: CPU time. Symbol 	: PLP/ISAT; .: URAN/ISAT; /: QT/
URAN/ISAT; diamondsuit: PREF(8)/URAN/ISAT; �: adaptive. Right column: normalized number of operations for different events performed by ISAT on each
processor from PLP/ISAT. Symbol 	: queries; �: retrieves; �: function evaluations; Each calculation results in an average of 1.0 � 108 queries per processor.

L. Lu et al. / Journal of Computational Physics 228 (2009) 5490–5525 5511
8. Effect of the number of processors on the parallel ISAT performance

In this section, we investigate the dependence of the parallel ISAT performance on Np, i.e., the number of processors used
in the multi-PaSR calculations. In particular, we investigate the parallel scaling of the adaptive ISAT strategy and the PLP/ISAT

1 2 3 4 5 6 7 8
0

20

40

60

80

100

120

Processor index

A
ve

ra
ge

 ti
m

e
pe

r
pa

rt
ic

le
 s

te
p

(μ
 s

)

1 2 3 4 5 6 7 8
10

−6

10−4

10−2

100

Processor index

N
or

m
al

iz
ed

 n
um

be
r

of
 o

pe
ra

tio
ns

queries
retrieves
function evaluations

1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

Processor index

A
ve

ra
ge

 ti
m

e
pe

r
pa

rt
ic

le
 s

te
p

(μ
 s

)

1 2 3 4 5 6 7 8
10−6

10−4

10−2

100

Processor index

N
or

m
al

iz
ed

 n
um

be
r

of
 o

pe
ra

tio
ns

queries
retrieves
function evaluations

1 2 3 4 5 6 7 8
0

500

1000

1500

2000

2500

3000

Processor index

A
ve

ra
ge

 ti
m

e
pe

r
pa

rt
ic

le
 s

te
p

(μ
 s

)

1 2 3 4 5 6 7 8
10−6

10−4

10−2

100

Processor index

N
or

m
al

iz
ed

 n
um

be
r

of
 o

pe
ra

tio
ns

queries
retrieves
function evaluations

Fig. 11. For the nonuniform disjoint PaSR tests, figure showing the performance of different parallel ISAT strategies. Top plots: etol ¼ 8� 10�4 and
A ¼ 2� 103; middle plots: etol ¼ 5� 10�4 and A ¼ 1� 103; bottom plots: etol ¼ 1� 10�4 and A ¼ 2� 103. Left column: wall clock time and CPU time in
reaction fractional step (in microseconds per particle step) for each processor. Solid symbol: wall clock time; open symbol: CPU time. Symbol 	: PLP/ISAT; .:
URAN/ISAT; /: QT/URAN/ISAT; }: PREF(8)/URAN/ISAT; �: adaptive. Right column: normalized number of operations for different events performed by ISAT
on each processor from PLP/ISAT. Symbol 	: queries; �: retrieves; �: function evaluations; Each calculation results in an average of 1.0 � 108 queries per
processor.

5512 L. Lu et al. / Journal of Computational Physics 228 (2009) 5490–5525
strategy on the Velocity 3 cluster at the Center for Advanced Computing at Cornell University. The cluster consists of 170
commodity rack-mounted servers with 2 CPUs per sever, connected via a standard switched network (gigabit Ethernet
and a fully nonblocking switch). The parallel calculations are performed by maintaining the problem size on each processor

1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

350

400

Processor index

A
ve

ra
ge

 ti
m

e
pe

r
pa

rt
ic

le
 s

te
p

(μ
 s

)

Fig. 12. For the nonuniform disjoint PaSR test with etol ¼ 8� 10�4 and A ¼ 2� 103, figure showing the ISAT performance with forced pairing in the adaptive
strategy. Solid symbols: wall clock time; open symbols: CPU time. Symbols �: adaptive with no pairing; 4: adaptive with single pairing forced at the first
pairing stage; 5: adaptive with two pairings forced at the first and second pairing stages; H: adaptive with three pairings forced at all three pairing stages.
Each calculation results in an average of 1.0 � 108 queries per processor.

0 10 20 30 40 50 60 70
0

100

200

300

400

500

600

700

800

Num. of processors

A
ve

ra
ge

 ti
m

e
pe

r
pa

rt
ic

le
 s

te
p

(μ
 s

)

Fig. 13. For the uniform coincident PaSR calculations with etol ¼ 1� 10�4 and A ¼ 2� 103, figure showing the average wall clock time and CPU time in
reaction fractional step (per particle step in microseconds) against the number of processors; Solid symbols: wall clock time; open symbols: CPU time.
Symbol 	: PLP/ISAT; �: adaptive.

L. Lu et al. / Journal of Computational Physics 228 (2009) 5490–5525 5513
constant (i.e., a fixed number of reactors on each processor, which is 1 in all the calculations) while varying the number of
processors. Calculations were conducted for 8, 16, 32 and 64 processors.

Fig. 13 shows the wall clock time and CPU time per particle step against the number of processors in both the PLP/ISAT
and adaptive strategies for the uniform coincident cases. Unsurprisingly, the CPU time and wall clock time for the PLP/ISAT
remain almost constant over the number of processors considered. However it is interesting to observe that the CPU time
and wall clock time for the adaptive strategy also remain almost constant. The reason is that the performance of the adaptive
strategy is mainly controlled by the number of pairings performed (i.e., the number of processors in each group), not the
number of processors used in the calculation. For the calculations run on 8, 16, 32, and 64 processors, the adaptive strategy
performs 3, 3, 4, and 4 pairings, respectively.

As may be seen, the wall clock time ratio between these two strategies (about 2) remains almost constant over the num-
ber of processors considered, which implies that the adaptive strategy has good scalability up to at least 64 processors for the
case considered here.

9. Discussions and future work

9.1. Primary retrieve and secondary retrieve

In ISAT5 [2], retrieve attempts consist of two different retrieve procedures, namely primary retrieve and secondary retrieve.
During a retrieve attempt, ISAT first traverses the binary tree and possibly scans two list-based data structures [2,35] (which

5514 L. Lu et al. / Journal of Computational Physics 228 (2009) 5490–5525
store the most frequently used and the most recently used tabulated entries) to check if the query point lies within the EOA
of a tabulated point. The query is resolved if it is in any identified EOA, and then a linear approximation to the solution is
returned. This outcome is a primary retrieve. Otherwise, ISAT tests more EOAs of tabulated points, attempting to find an
EOA containing the query point. The query is resolved if it is in any identified EOA, and then a linear approximation to
the solution is returned. This outcome is a secondary retrieve. The amount of secondary retrieving attempted is controlled
so that the CPU time spent on it (in a given query) is less than a specified fraction of the average CPU time per function eval-
uation. It should be noted that the computational cost associated with primary retrieve and secondary retrieve may be quite
different, e.g., the CPU time per retrieve in secondary retrieve may be orders of magnitude higher than that in primary retrieve.

In the multi-stage parallel ISAT strategies, due to the difference in computational cost, it is possible to introduce load
imbalance in the PREF rounds when primary and secondary retrieves are used in combination in the retrieve attempts, which
may significantly degrade the parallel ISAT performance. (Such phenomena are not observed in the current PaSR calculations
due to the small tables used and the relatively easy problems considered.)

The approach to solve the above issue is to separate primary retrieve attempts and secondary retrieve attempts into differ-
ent PREF rounds. Instead of performing retrieve attempts with primary retrieve and secondary retrieve combined together, an
alternative way is to perform attempts of primary retrieve first and then perform attempts of secondary retrieve with both
using the PREF distribution strategy.

9.2. Quick try (QT)

As mentioned, the advantage of performing QT is that it can significantly reduce the number of unresolved particles
requiring message passing. However if the time spent in QT among processors is significantly different, then it can introduce
significant load imbalance during this process. The load imbalance in QT may be caused by a nonuniform distribution of par-
ticles among processors (as shown in Fig. 9) or a nonuniform distribution of primary and secondary retrieve attempts in QT.

Currently it is still not clear how the optimal QT should be performed. Should it be based on primary retrieve or the com-
bination of primary retrieve and secondary retrieve? Is it possible to adaptively determine how much QT is optimal (i.e., none,
primary retrieve, or the combination of primary retrieve and secondary retrieve)?

For the results reported above, the combination of primary retrieve and secondary retrieve is used in QT. In the current par-
allel ISAT implementation, QT needs to be manually specified by users (either based on primary retrieve or the combination of
primary retrieve and secondary retrieve). As long as memory is not a primary consideration, QT should not be invoked for the
PREF strategies and the adaptive strategy. This is due to the following reasons. In the first retrieve attempt in PREF, if the
number of particles to be resolved is uniform or close to uniform among the processors, PREF forces the particles to try
the first retrieve attempt from their local ISAT table. Hence it is equivalent to QT. Otherwise if particles among the processors
are significantly nonuniform, PREF distributes particles uniformly among the processors and the first retrieve attempt for
particles is not necessarily made on the local ISAT table. Under this circumstance, QT should not be invoked as PREF effec-
tively does this, taking into account load balancing.

9.3. The number of table entries allowed on the Lth stage a�L

The number of table entries allowed for each processor on the Lth stage, a�L , is an important parameter in the adaptive
strategy which may affect parallel ISAT performance. There are various ways to specify it. With the current specification gi-
ven by Eq. (13), most of the table is built based on local particles during the first pairing stage, which are considered more
useful than those tabulated during later stages for a statistically stationary problem. The advantage of this specification is as
follows: the local tables contains significant local composition information; thus instead of passing large numbers of parti-
cles and trying to retrieve from remote ISAT tables on the other processors, significant fractions of particles can be resolved
by using the local ISAT table; hence the number of particles requiring message passing is significantly reduced. The disad-
vantage of this specification is that the ISAT tables may contain significant amounts of redundant information, hence the as-
signed ISAT storage has not been fully utilized.

An alternative way to build the ISAT tables that makes better usage of the allowed memories, is as follows. In the Lth stage
of the Ms ¼ log2ðNpÞ pairing stages, the simulation runs until (a) the ISAT tables on all the processors are fully developed
or (b) the number of table entries on each processor of one group reaches a�L ¼ A, i.e., the table is full. At the end of the
Lth stage, after the pairing decision is made, all the ISAT tables are deleted and then rebuilt by using PREF ðgÞ/URAN/ISAT
with g determined from the adaptive strategy. The disadvantage of this specification is that it spends a significant amount
of extra time in building ISAT tables. However considering extremely long-run simulations where the time spent in building
tables is negligible, rebuilding ISAT tables for better future usage may still be beneficial. This option is worthy of further
investigation.

9.4. Application to a very large number of processors

The current study demonstrates good scalability for the adaptive strategy up to 64 processors. Whether this strategy is
able to perform consistently well with a larger number of processors (e.g., 104 or 105) or with more complex chemistry
remains in question and needs to be further investigated. Several limitations in the current adaptive algorithm are:

L. Lu et al. / Journal of Computational Physics 228 (2009) 5490–5525 5515
� The adaptive strategy requires the computations of Pij and tRj!i;w. To compute them requires at least O N2
p

� �
operations.

Consequently, for sufficiently large Np, the cost of computing Pij and tRj!i;w will dominate that of most other processes
which scale linearly with Np.

� The adaptive strategy requires pairing among groups. The algorithm currently used (see Appendix D) for determining opti-
mal pairing among groups runs in O N3

p logðNpÞ
� �

operations. Consequently, for sufficiently large Np, the cost of the paring
process will dominate that of most other processes which scale linearly with Np.

� For large Np, with a large number of pairing stages, the pairing phase in the adaptive strategy may take a significant frac-
tion of the simulation time.
One possible approach to solve the above limitations is that for a simulation with large Np, at the beginning of the sim-
ulation one can partition the Np processors into several groups with each group having a smaller number of processors (e.g.,
64) and then apply the adaptive strategy in each group.

Another limitation with the current adaptive strategy is that the number of processors used in the simulation, Np, needs to
be an integer power of 2. Extension of the strategy to the general number of processor needs to be further considered.

10. Conclusion

The in situ adaptive tabulation (ISAT) algorithm [1] has been widely used for the efficient calculation of combustion chem-
istry in simulations of reactive flows. When it is employed for combustion chemistry in a parallel calculation, even though
ISAT substantially speeds up the chemistry calculation on each processor, the overall load imbalance in the chemistry cal-
culations among the processors severely affects the computational efficiency. To further improve the efficiency in chemistry
calculations in parallel calculations, in this work, the original serial ISAT algorithm is extended to the multi-processor envi-
ronment. The platform considered to perform parallel calculations is a distributed memory system. Message passing among
the processors is performed using MPI. The whole computational domain is decomposed into sub-domains using domain
decomposition, and each processor performs the computation for one sub-domain.

Parallel ISAT strategies have been developed via the use of different distribution strategies combined with the serial ISAT
algorithm. In calculations with a parallel ISAT strategy, each processor has its own ISAT table. During the chemistry calculation,
particles on one processor may be distributed to one or more other processors by distribution strategies, and be resolved by the
ISAT tables there. Particles are distributed by message passing before and after the serial ISAT algorithm, not within ISAT. Three
different distribution strategies have been developed and implemented in the software x2f mpi, namely, purely local process-
ing (PLP), uniformly random distribution (URAN), and preferential distribution (PREF). For PLP, there is no message passing in
the chemistry calculations, and particles on each processor are locally processed by the local ISAT table. For URAN, the particles
in a group of processors are randomly distributed uniformly among all the processors in the group using message passing. For
PREF, the particles have preference to some processors, that is, particles can only be passed to processors that they have not
visited previously during that reaction step. The above three different distribution strategies can be used in combination.

Different parallel ISAT strategies are developed with fixed or adaptive distribution strategies. For parallel ISAT with fixed
distribution strategies, the distribution strategy is pre-specified by the user before a calculation, whereas for the adaptive
strategy, the optimal distribution strategy is determined on the fly based on the prediction of future simulation time. For
all the parallel ISAT strategies, computational efficiency in the chemistry calculations is achieved through the use of the mul-
ti-stage processes and load redistribution among processors using MPI.

The ISAT performance for chemistry calculations depends strongly on both the distribution of queries and the distribution
of compositions among the processors. The relative performance of different parallel ISAT strategies is investigated in four
extreme computational regimes, namely, coincident composition distributions with uniform and nonuniform numbers of
queries, and disjoint composition distributions with uniform and nonuniform numbers of queries. To fulfill this purpose,
the serial PaSR is extended to the multi-processor environment, and the parallel PDF calculations of multiple partially stirred
reactors burning methane/air mixtures are performed. The multiple PaSR test has the advantage of simplicity in terms of
controlling the distribution of particle compositions DðxÞ and the number of queries on each proces- sor.

The results show that the performance of the parallel ISAT strategies with fixed distribution strategies depends strongly
on the computational regimes in which the problem is located; no single fixed strategy consistently achieves good perfor-
mance in all computational regimes. For example, PREF/URAN/ISAT and URAN/ISAT perform poorly in the uniform disjoint
regime, whereas the PLP/ISAT performs poorly in the nonuniform coincident regime. In contrast, the adaptive ISAT strategy
yields reasonably good performance in all regimes. Compared to the PLP/ISAT strategy, where the chemistry calculation is
essentially serial, a speed-up factor of up to 30 is achieved by the adaptive parallel ISAT strategy. The study also demon-
strates that the adaptive strategy has very good parallel scalability.

It is worth mentioning that the software x2f mpi, with different distribution strategies implemented, can be used for effi-
cient general function evaluations in parallel calculations.

Acknowledgment

This research was conducted using the resources of the Cornell University Center for Advanced Computing, which
receives funding from Cornell University, New York State, the National Science Foundations, and other leading public

agencies, foundations, and corporations. This work is supported by the National Science Foundation under Grant No. CBET-
0426787.

Appendix A. Probability of function evaluation after many queries

A fundamental quantity in developing an understanding of ISAT performance is the probability of function evaluation
pFðq;AÞ, which is defined to be the sum of the probabilities of grow, add, and discarded evaluation, i.e.,
pFðq;AÞ � pGðq;AÞ þ pAðq;AÞ þ pDðq;AÞ ¼ 1� pRðq;AÞ: ðA:1Þ
The purpose of this appendix is to predict the probability of function evaluation pF for a very long-run simulation with an
allowed number of table entries A, i.e., pFð1;AÞ, based on information available at the point when the table becomes full.

A.1. Asymptotic behavior of pFð1;AÞ

For a given ISAT task, during the calculation, suppose that geometrically the whole composition space can be partitioned
into three regions: retrieve region, R; grow region, G; and add region A. During the calculation, these three regions R; calG,
and A evolve, and they depend on the number of allowed table entries A and the number of queries performed q. The cat-
egorization is based on how a query with a particular value of composition xq would be resolved. That is, if a query xq results
in a retrieve, then xq is by definition in the retrieve region R; if it results in a grow, it is in the grow region G; and if it results
in an add, it is in the add region A. Let Rðq;AÞ;Gðq;AÞ and Aðq;AÞ denote the retrieve region, grow region and add region on
the qth query with allowed table entries A. The probabilities of different events pRðq;AÞ; pGðq;AÞ, and pAðq;AÞ are just the
probabilities of the qth query xq being in the regions Rðq;AÞ;Gðq;AÞ, and Aðq;AÞ, respectively.

Let qf ðAÞ be the query on which the ISAT table becomes full. Consider stopping adding at the query point q ¼ qf ðAÞ and
continuing for an infinite number of queries. We consider the following simple model. Due to growing, the retrieve region R
grows as much as it can so that for an infinite number of queries, the retrieve regionR is the union of the retrieve region and
the grow region when the table became full, and the grow region at q ¼ 1 becomes empty, i.e.,
Rð1;AÞ ¼ Rðqf ðAÞ;AÞ [Gðqf ðAÞ;AÞ; Gð1;AÞ ¼£ ðA:2Þ
Notice that this simple model assumes that growing does not cause the EOAs to extend into the add region, and hence any
query in the add region results in a discarded evaluation. According to the model (with pAð1;AÞ ¼ 0), we have
pRð1;AÞ ¼ pRðqf ðAÞ;AÞ þ pGðqf ðAÞ;AÞ;
pGð1;AÞ ¼ 0;
pDð1;AÞ ¼ pAðqf ðAÞ;AÞ;
pFð1;AÞ ¼ pGð1;AÞ þ pDð1;AÞ ¼ pDð1;AÞ ¼ pAðqf ðAÞ;AÞ: ðA:3Þ
Hence, for a very long-run simulation with allowed table entries A, the probability of function evaluation pFð1;AÞ is equal to
the probability of discarded evaluation pDð1;AÞ, which can be estimated using the probability of add pAðqf ðAÞ;AÞ when the
table becomes full.
104 106 108 1010
10−5

10−4

10−3

10−2

10−1

100

q

p
F
=p

G
+p

A
+p

D

p
A

p
G

104 106 108 1010
10−6

10−5

10−4

10−3

10−2

10−1

100

100 105
10−4

10−3

10−2

10−1

100

p A

(18/a)1.0

a

Fig. 15. Probability of add pA against the number of tabulated table entries a. Symbols: results from the PaSR calculation with the skeletal mechanism and
etol ¼ 2� 10�4; line: the inverse power law ðc=aÞr with c ¼ 18 and r ¼ 1:0.

L. Lu et al. / Journal of Computational Physics 228 (2009) 5490–5525 5517
Fig. 14 shows the probability of function evaluation pF , the probability of add pA, and the probability of grow pG from two
PaSR calculations with different settings. As may be seen from the figure, the probability of grow pG becomes very small for a
large number of queries, q. Hence for a very long-run simulation, the probability of function evaluation pFð1;AÞ is indeed
close to the probability of discarded evaluation pDð1;AÞ.

Another important observation is that the quality of the estimation of the probability of function evaluation pFð1;AÞ
using the probability of add pAðqf ðAÞ;AÞ is case-dependent. The probability of function evaluation pF can be overestimated
or underestimated by the simple model presented above. Nevertheless, as shown in Section 6, it is sufficient to use this sim-
ple model to estimate pF for a long-run simulation and make the right decisions in the adaptive strategy.

A.2. Power law for pA

For a given ISAT task with a large number of queries, according to Eq. (A.3), the probability of function evaluation for an
infinite number of queries pFð1;AÞ can be estimated using the probability of add pAðqf ðAÞ;AÞ. As revealed by the notation,
pAðqf ðAÞ;AÞ depends only on the number of tabulated table entries. Since A is arbitrary, the function pAðqf ðAÞ;AÞ is simply
one instance of the general function pAðqðaÞ; aÞ, or in short, pAðaÞ, where a is the number of tabulated entries and qðaÞ is
the corresponding number of queries in a simulation. For a given calculation, the functional relation between pAðaÞ and a
can be easily obtained from the ISAT statistics.

Fig. 15 shows the probability of add, pA, against the number of tabulated table entries, a, from a PaSR calculation. For suf-
ficiently large a, the probability of add pA decreases almost monotonically with a (within statistical fluctuation). As shown in
the figure, for a sufficiently large number of table entries, the curve of pA is reasonably well represented by an inverse power
law. For the particular case shown, the inverse power is 1. For all the cases investigated in the present study, the observed
range of the inverse power is from 0.5 to 1.5. (In other studies [35] where PDF calculations of the oxidation of a premixed
methane/air mixture in a PaSR are performed, an inverse power up to 1.7 is observed.) Based on these observations, the func-
tional relation between pAðaÞ and a can be approximated by the following inverse power law:
pAðaÞ
 ðc=aÞr; ðA:4Þ
where c and r are problem-dependent constants.
To sum up, for a given table size A, the probability of function evaluation after an infinite number of queries pFð1;AÞ is

approximately equal to the probability of add when the table becomes full, pAðqf ðAÞ;AÞ. The latter, to a good approximation,
can be estimated from the power law in Eq. (A.4).

Appendix B. Preferential distribution (PREF) algorithm

We consider B batches of particles, resident on P processors. (When PREF is used in the adaptive ISAT strategy, P is the
number of processors in each group, i.e., g. Otherwise, P is the number of processors in the calculation, i.e., Np.) There are
Nb particles in batch b with 1 6 b 6 B. We define an indicator matrix K of dimension B� P. The components of K have values
0 or 1. Batch b can be processed on processor p only if Kbp equals 1. (The components of matrix K are all set to be 1 initially,
and are updated subsequently by tracking which processors the unresolved particles have been to.) The task is to assign par-
ticle batches to valid processors in such a way that (as nearly as possible) each processor is assigned the same number of
particles.

5518 L. Lu et al. / Journal of Computational Physics 228 (2009) 5490–5525
We define the following quantities in the algorithm:

� N ¼
PB

b¼1Nb=P is the average number of particles to be assigned to each processor
� Mb is the number of particles in batch b yet to be assigned; initially Mb ¼ Nb

� Vp denotes the vacancies on processor p; initially Vp ¼ N
� Jbp ¼ 1 if some particles in batch b can be assigned to processor p; initially J ¼ K
� Fp �

PB
b¼1JbpMb=Vp is the average number of particles per vacancy that could be assigned to processor p

� Ab �
PP

p¼1JbpVp=Mb is the average number of available vacancies per particle in batch b.

The strategy employed is as follows.

(1) Selection of p. Processor p is first selected such that Fp 6 Fp0 for all p0 such that Jbp0 ¼ 1 for some b. A processor with a
small value of Fp means that the number of particles eligible to visit this processor is relatively small, and in order to
distribute all the particles and at the same time (if possible) guarantee load balancing, it is desirable to assign particles
to this processor first.

(2) Selection of b. Batch b is then selected such that Ab 6 Ab0 for all b0 such that Jb0p ¼ 1. A batch with a small value of Ab

means that the number of processors eligible for the particles (in the batch) to visit is relatively small, and in order to
distribute all the particles and at the same time (if possible) guarantee load balancing, it is desirable to distribute these
particles first.

After selection of b and p;Mb;Vp and Jbp are updated as follows:

if Mb 6 Vp:

assign all Mb particles to processor p
Vp Vp �Mb, adjust count of vacancies
Mb ¼ 0, no more particles to assign
Jðb; :Þ ¼ 0, no more particles in batch b
if Vp ¼ 0, Jð:; pÞ ¼ 0 no more particles can be assigned to p

otherwise (i.e., Mb > Vp)
assign Vp particles from batch b to processor p
Mb ¼ Mb � Vp, adjust the number of particles yet to be assigned
Vp ¼ 0, no more vacancies
Jðp; :Þ ¼ 0, no more vacancies on processor p

The process is repeated until the maximum component in J is 0. Notice that for some cases, some particles may be unas-
signed at the end. In order to assign all of the particles, the vacancy size N on each processor is increased. Currently N is in-
creased by 8% each time the strategy does not assign all of the particles.

A similar strategy can be defined by selecting b first, and then p (rather than vice versa). It is found that there is no
significant difference in terms of performance between these two variants.

One thing worth mentioning is, in the first retrieve attempt, if the number of particles to be resolved is uniform or close to
uniform among the processors, the current implementation of the PREF algorithm forces, to the extent possible, the particles
to try the first retrieve attempt from their local ISAT tables to reduce the amount of message passing; otherwise if the num-
bers of particles among the processors are significantly nonuniform, the above algorithm is used to distribute particles uni-
formly among the processors, and thus the first retrieve attempt for particles is not necessarily made on the local ISAT tables.
In current implementation, a case is deemed to be nonuniform if the number of particles on one processor is ~a (e.g., ~a ¼ 2)
times more than the average number of particles among the processors, where ~a is a user-specified parameter (having
default value ~a ¼ 2.)

Appendix C. Fully developed ISAT table

In the current implementation, we deem an ISAT table to be ‘‘fully developed” when
pG þ pA < pfd ðC:1Þ
with pfd (e.g., pfd ¼ 10�4) being a user-specified threshold value. This criterion is based solely on the frequency of the add and
grow events, regardless of the computational time spent in different events.

Another viable criterion to be investigated is based on the fraction of time spent in grow and add. Under this criterion, an
ISAT table is deemed to be ‘‘fully developed” when
ðpG þ pAÞtF < aðpDtF þ pRtRÞ; ðC:2Þ
i.e.,
pG þ pA < aðpD þ pRtR=tFÞ; ðC:3Þ

L. Lu et al. / Journal of Computational Physics 228 (2009) 5490–5525 5519
where a is a user-specified parameter (e.g., a ¼ 0:1), tR and tF are the average retrieve time and function evaluation time,
respectively. The left-hand side of Eq. (C.2) is an estimate for the fraction of time in grow and add, and the term
ðpDtF þ pRtRÞ on the right hand side is an estimate of the time in retrieve and discarded evaluation. Hence, by this criterion,
the table is ‘‘fully developed” when the fraction of time spent in grow and add is less than the (relatively small) user-spec-
ified value a.

Appendix D. Algorithm for optimal pairing

We consider the lth stage of the adaptive strategy, in which the simulation has 2� Ng groups (of processors). Each of the
groups i can be paired with one of the other groups j with an estimated wall clock time T 0ij for the hypothetical pairing. The
objective here is to partition the groups into Ng pairs of new groups, such that this partition minimizes the maximum value
of T 0ij over all i and j pairs corresponding to new groups.

This problem is closely related to the Maximum Cardinality Matching problem (MCM): Given an undirected (and un-
weighted) graph consisting of a set of vertices, V, and a set of edges, E, determine the largest possible matching. A matching
is a set M of edges such that each vertex belongs to at most one member of M. A matching is said to be perfect if each vertex
belongs to exactly one member of M (i.e., all the vertices are used). For the problem we consider here, the set of vertices cor-
responds to the groups in the simulation, the edges between vertices are hypothetical pairing between different groups, and
a matching is to pair each one of the groups in the simulation with exactly one of the other groups.

The graph we have here is weighted with the edge weight corresponding to the estimated wall clock time for the hypo-
thetical pairing and the goal is to find the perfect matching M that minimizes the maximum weight among all edges of M. The
algorithm used here is proposed by Chew [37] which makes use of the MCM subroutine [38].

(1) Let G = (V, E) be the graph. Sort the edges by weight. The idea is to use binary search on the sorted list of edges. Let w be
the middle weight in the sorted list of edges.

(2) Form G0, an unweighted graph by retaining only the edges with weight less than w.
(3) Run the MCM algorithm to see if G0 has a perfect match. If it does, make w smaller (as in binary search). If it does not,

make w larger (as in binary search).
(4) If the binary search range is down to a single weight, report that weight; otherwise go to step (2).

The rationale of the algorithm is to gradually exclude the heavy edges in the graph and then use MCM to determine if a
perfect match exists within the remaining edges. The MCM subroutine used runs in time Oðn3Þ, where n is the number of
vertices. Thus the above algorithm, based on the MCM subroutine and binary search, runs in time Oðn3 logðnÞÞ. It is found
that with the algorithm, optimal pairing can be obtained efficiently.

Appendix E. The estimated times in adaptive ISAT strategy

In this appendix, we discuss how the different estimated times required in the adaptive strategy are obtained. In order for
this strategy to be effective, it is necessary to construct and compare estimates of wall clock time for the two cases of paring
and not pairing the existing groups of processors.

E.1. The estimated time T 0i with no pairing

When there is no pairing, the existing grouping remains unchanged and the ISAT tables continue to develop based on the
queries from within the group. During each block sub-step, the particles from each group are distributed among the proces-
sor(s) within the group and retrieve attempts are made using the PREF distribution strategy. Those particles that have not
been resolved by retrieve attempts are distributed evenly using the URAN strategy within each group and resolved by either
grow, add, or discarded evaluation. For a very long-run simulation with the existing grouping, one can estimate the time
spent in retrieve attempts and function evaluations separately based on the available information. Then the estimated time
per block sub-step in the ith group, T 0i, is just the sum of these two, i.e.,
T 0i ¼ N0it
0
Ri;w þ N0Fit

0
Fi;w; ðE:1Þ
where the first term on right hand side represents the contribution from retrieve attempts and the second term represents
the contribution from function evaluation. In Eq. (E.1), N0i is the average number of particles processed on each processor in
group i in each block sub-step; N0Fi is the estimated number of particles that need to be evaluated using function evaluation
on each processor in group i in each block sub-step; t0Ri;w and t0Fi;w are the average wall clock time per particle spent in retrieve
attempts and function evaluations, respectively.

The quantities N0i; t
0
Ri;w;N

0
Fi and t0Fi;w are estimated as follows. The variable N0i is estimated as
N0i ¼ Ni; ðE:2Þ

5520 L. Lu et al. / Journal of Computational Physics 228 (2009) 5490–5525
where Ni is the average number of particles processed on each processor in group i in each block sub-step, i.e.,
Ni � ðNi;1 þ Ni;2 þ � � � þ Ni;k þ � � � þ Ni;gÞ=g ðE:3Þ
with Ni;k being the number of particles on the kth processor in the ith group in each block sub-step. The variable t0Ri;w is esti-
mated as
t0Ri;w ¼ tRi;w; ðE:4Þ
where tRi;w is obtained by dividing the measured wall clock time spent in retrieve attempts by the average number of par-
ticles treated per processor, i.e., Ni, during retrieve attempts in group i. Notice that tRi;w includes not only the CPU time but
also the communication and synchronization times. The variable t0Fi;w is estimated as
t0Fi;w ¼maxðtFi;1; tFi;2; � � � tFi;k; � � � tFi;gÞ; ðE:5Þ
where tFi is the average CPU time per function evaluation and is extracted from ISAT statistics during the simulation. The
variable N0Fi is estimated as
N0Fi ¼ N0ip
0
Fið1; a0iÞ; ðE:6Þ
where p0Fið1; a0iÞ is the estimation of the probability of function evaluation in group i for a long-run simulation with a0i table
entries. We assume that for the long-run simulation all processors in group i have tabulated the maximum allowed number
of entries A. Hence a0i is given by
a0i ¼ gA: ðE:7Þ
From Eq. (A.3), the probability of function evaluation pFið1; a0iÞ can be estimated using
pFið1; a0iÞ � pAiða0iÞ: ðE:8Þ
The probability of add pAiða0iÞ can be obtained through the power law Eq. (A.4)
pAiða0iÞ
pAiðaiÞ

¼ ai

a0i

� �r

; ðE:9Þ
where ai is the total number of tabulated entries in the current pairing stage in group i, and the probability of add pAiðaiÞ is
obtained by dividing the counted number of adds by the total number of queries in group i at the step when the number of
table entries in group i reaches ai. The power r observed in the simulations to date is in the range of 0.5 and 1.5 and the value
1 is used in the current implementation. The effect of different values of r is investigated below.

E.2. The estimated time T 0ij with pairing

When groups i and group j are paired to form a new group, during each block sub-step, for particles from one group, re-
trieve attempts can be made using not only their original group’s ISAT table(s), but also the one(s) in the other group. Thus
the number of retrieve attempts allowed using the PREF distribution strategy doubles. Particles that have not been resolved
by retrieves are distributed evenly using the URAN strategy within all the processors in the new group and resolved by func-
tion evaluations (through the events grow, add, or discarded evaluation). For a very long-run simulation, with this new
grouping, we similarly estimate the time spent in retrieve attempts and function evaluations separately, and the estimated
time per block sub-step, T 0ij, is the sum of these two, i.e.,
T 0ij ¼ N0ijt
0
Rij;w þ N0Fijt

0
Fij;w ðE:10Þ
where N0ij represents the estimated average number of particles processed in retrieve attempts per processor when groups i
and j are paired in each block sub-step; N0Fij is the estimated number of particles per processor that need to be resolved by
function evaluation in each block sub-step; and t0Rij;w and t0Fij;w are the estimated average wall clock times per particle spent in
retrieve attempts and function evaluation when groups i and j are paired, respectively.

In the current implementation, N0ij is obtained as
N0ij ¼ ðNi þ NjÞ=2; ðE:11Þ
which is the average number of particles processed on each processor when groups i and j are paired; and t0Fij;w is obtained as
t0Fij;w ¼maxðt0Fi;w; t
0
Fj;wÞ; ðE:12Þ
where t0Fi;w and t0Fj;w are obtained through Eq. (E.5).
The estimations of N0Fij and t0Rij;w are more subtle and are elaborated in the following.

E.2.1. The estimate N0Fij of the number of function evaluations required
When groups i and j are paired to form a new group, for a long-run simulation, we denote by a0i and a0j the total number of table

entries tabulated in the new group based on particles from group i and group j, respectively, regardless of whether these entries

L. Lu et al. / Journal of Computational Physics 228 (2009) 5490–5525 5521
are in the ISAT tables of group i or group j. For example, the table entries based on compositions from group i are not necessarily
tabulated on the processors in the former group i, and may be tabulated on the processors in the former group j. We assume

(1) that a0i and a0j are proportional to ai and aj, respectively, i.e.,
a0i
a0j
¼ ai

aj
; ðE:13Þ

where ai and aj are the numbers of table entries in group i and group j, respectively, immediately prior to the current
pairing stage.
(2) that the maximum allowed number of table entries in the new group is used in a long-run simulation, i.e.,
a0i þ a0j ¼ 2gA; ðE:14Þ

where 2g is the number of processors in the new group.
With these two assumptions, we have
a0i ¼ 2gA
ai

ai þ aj
ðE:15Þ
and
a0j ¼ 2gA
aj

ai þ aj
: ðE:16Þ
When groups i and j are paired to form a new group, whether or not particles from one group (say group i) are able to be
retrieved using the table entries added based on compositions from the other group (say group j) depends on the composi-
tion distributions DðxÞ on these two groups. For example, if the particle compositions in groups i and j are disjoint, then the
table entries added based on compositions from group j are useless for retrieving particle compositions from group i. Let ~ai

denote the effective number of tabulated table entries that are useful for retrieving particle compositions from group i when
groups i and j are paired to form a new group. If the particle compositions in groups i and j are disjoint then
~ai ¼ a0i; ðE:17Þ
at the other extreme, if they are coincident then
~ai ¼ a0i þ a0j: ðE:18Þ
In general, we model ~ai as
~ai ¼ a0i þ a0j
Pij

maxðPij; PjjÞ
; ðE:19Þ
where Pij is the probability that a particle from group i can be resolved by retrieve from the ISAT table(s) in group j, and Pjj is
the probability that a particle from group j can be resolved by retrieve from the ISAT table(s) in group j. Both Pij and Pjj are
obtained from the statistics in the current pairing stage. (Notice that for coincident cases, Pij may be far less than one due to
the small number of table entries allowed. Simply using ~ai ¼ a0i þ a0jPij may underestimate the effective number of table
entries ~ai available for group i. The above normalization in Eq. (E.19) is expected to provide a reasonable prediction of ~ai.)
Similarly, we model ~aj as
~aj ¼ a0j þ a0i
Pji

maxðPji; PiiÞ
: ðE:20Þ
Then for a long-run simulation in which groups i and j are paired, with Eq. (A.3) and the power law in Eq. (A.4), the prob-
ability of a group i particle composition requiring function evaluation is
p0Fið1; ~aiÞ ¼ pAiðaiÞ
ai

~ai

� �r

; ðE:21Þ
where ai is the number of tabulated entries immediately prior to the current pairing stage in group i, and the current prob-
ability of add, pAi

ðaiÞ, is estimated by dividing the counted number of adds by the total number of queries in group i at the
step when the number of tabulated table entries in group i reaches ai. Similarly,
p0Fjð1; ~ajÞ ¼ pAjðajÞ
aj

~aj

� �r

: ðE:22Þ
The unresolved particles after the retrieve attempts should be evenly distributed among the two groups’ processors and re-
solved by function evaluation, thus N0Fij can be estimated as

Fig. 16
case (b
clock ti
the esti
1.0 � 1

5522 L. Lu et al. / Journal of Computational Physics 228 (2009) 5490–5525
N0Fij ¼
Nip0Fið1; ~aiÞ þ Njp0Fjð1; ~ajÞ

2
; ðE:23Þ
where Ni and Nj are the average number of particles per processor on group i and group j, respectively.

E.2.2. The estimate t0Rij;w of the retrieving time
When groups i and j are paired, retrieve attempts can be made for particles using not only their original group’s ISAT ta-

ble(s) but also the one(s) paired with the group. The average wall clock time per particle spent in retrieve attempts, tRij;w, for a
long-run simulation after pairing is difficult to estimate. There is no straightforward functional relation between tRij;w and
tRi;w and tRj;w, where tRi;w and tRj;w are the measured average wall clock times per particle spent in retrieve attempts for par-
ticles within group i and within group j in the current pairing stage, respectively.

To illustrate the complicated relationship between tRi;w; tRj;w and tRij;w, we perform the following PaSR tests. For each PaSR
test, two initially identical simulations (each having two groups with one processor in each group) run until the criterion for
pairing is reached. Then the two simulations, one with forced pairing between these two groups and the other one with no
pairing, continue to run for a sufficiently long time. At the same time, the wall clock time spent in retrieve attempts is mea-
sured, and by normalizing the wall clock time by the average number of particles processed, the average retrieve time per
particle can be obtained. Fig. 16 shows measurements of tRi;w; tRj;w and tRij;w from two uniform PaSR tests, one being coinci-
dent and the other one being disjoint. The figure shows only the results subsequent to the pairing/no-pairing branch point.
As may be seen from the figure, for the coincident case, tRij;w is slightly larger (about 25%) than tRi;w and tRj;w. However for the
disjoint case, tRij;w is much larger (about 60%) than tRi;w and tRj;w.

Hence when groups i and j are paired, the retrieving processes among the processors in these two groups are nontrivial
and consequently tRij;w is difficult to estimate. Currently, we estimate tRij;w by modelling the retrieving processes through the
following two-step process.

(1) In the first step, retrieve attempts are made on half of the particles from one group (say group i) and half of the par-
ticles from the other group (say group j), using the ISAT tables in the group (say group i). The non-local particles are
sent by message passing. Specifically, in the first step, the number of particles that need to be processed by each pro-
cessor in group i and group j is
NRi;1 ¼ NRj;1 ¼
Ni þ Nj

2
: ðE:24Þ

The computational time spent in this step in group i can be estimated as

Ii ¼
Ni

2
tRi;w þ

Nj

2
tRj!i;w þ

Nj

2
tC ; ðE:25Þ

where tRj!i;w is the measured average wall clock time per particle for particles from group j spent in retrieve attempts
in group i which is obtained from statistics in the current pairing stage, and tC is the average two-way communication
time per particle. Similarly for Ij, we have
500 1000 1500 2000 2500
0

10

20

30

40

50

60

70

80

W
al

l c
lo

ck
 ti

m
e

pe
r

re
tr

ie
ve

 (μ
 s

)

reaction fractional step

t
Rij,w

t
Ri,w

t
Rj,w

t
Rij,w
’

500 1000 1500 2000 2500
0

10

20

30

40

50

60

70

80

W
al

l c
lo

ck
 ti

m
e

pe
r

re
tr

ie
ve

 (μ
 s

)

reaction fractional step

t
Rij,w

t
Ri,w

t
Rj,w

t
Rij,w
’

a b

. Wall clock time per particle in retrieve attempts from the uniform PaSR calculations with Np ¼ 2; etol ¼ 1� 10�4 and A ¼ 2� 103; (a) coincident
) disjoint case. Black dashed line: tRij;w , measured wall clock time for the case with group i and j being paired; black solid line: tRi;w , measured wall
me for group i without pairing performed; black dot line: tRj;w , measured wall clock for group j with no pairing performed; horizontal solid line: t0Rij;w ,
mated wall clock time per particle in retrieve attempts for the hypothetical pairing between group i and j. Each calculation results in an average of
07 queries per processor. The figure shows only the results subsequent to the paring/no-pairing branch point.

L. Lu et al. / Journal of Computational Physics 228 (2009) 5490–5525 5523
Ij ¼
Nj

2
tRj;w þ

Ni

2
tRi!j;w þ

Ni

2
tC : ðE:26Þ
(2) In the second step, retrieve attempts are made on the unresolved particles from the first step based on the ISAT tables
in the other group. Hence in this step each group in the potential pairing needs to process the unresolved particles
from the other group. The number of particles treated per processor in group i in this step is
NRi;2 ¼
Ni

2
ð1� PijÞ þ

Nj

2
ð1� PjjÞ; ðE:27Þ

where Pij is the probability that a particle composition from group i can be retrieved from ISAT table(s) in group j. Sim-
ilarly for NRj;2 we have

NRj;2 ¼
Nj

2
ð1� PjiÞ þ

Ni

2
ð1� PiiÞ: ðE:28Þ

The computational time spent in this step on group i can be estimated as

IIi ¼
Ni

2
ð1� PijÞtRi;w þ

Nj

2
ð1� PjjÞtRj!i;w þ

Nj

2
ð1� PjjÞtC ; ðE:29Þ

where the first two terms on the right hand side are the contribution from the retrieve attempts and the last term is
the message passing time. Similarly, we have

IIj ¼
Nj

2
ð1� PjiÞtRj;w þ

Ni

2
ð1� PiiÞtRi!j;w þ

Ni

2
ð1� PiiÞtC : ðE:30Þ
The average wall clock time per particle spent in retrieve attempts, t0Rij;w, can be obtained as
t0Rij;w ¼
maxðIi; IjÞ þmaxðIIi; IIjÞ

ðNi þ NjÞ=2
: ðE:31Þ
Also shown in Fig. 16 are t0Rij;w, the estimated wall clock times per particle in retrieve attempts for the hypothetical pairing
between group i and j based on the above two-step empirical procedure for the two uniform cases. As may be seen, for both
the coincident and disjoint cases considered, there is good agreement between the measured and estimated wall clock time
in retrieve attempts when two groups are paired. For the test cases considered, the above two-step procedure to compute
t0Rij;w provides a sufficiently good estimate for tRij;w.

It is worth mentioning that the above two-step process is the first attempt to model the complicated retrieving processes
among the processors in two groups when they are paired. When computational particles among the processors are signif-
icantly nonuniform, during each retrieve attempt, PREF distributes the unresolved particles uniformly among the processors
in the two groups; and to a good approximation, half of the unresolved particles from one group are processed by local ISAT
tables and the other half are processed by remote ISAT tables on the processors in the other group. Therefore for the highly
nonuniform cases, the retrieve attempts are realistically (to some extent) represented by the above two-step process. How-
ever for uniform (or close to uniform) cases, PREF forces particles to attempt retrieving from the local table first, and the
assumption in the two-step procedure ‘‘half of the particles from one group are processed by remote ISAT tables in the other
group” is far from realistic. Nevertheless, while not realistic, as shown in Fig. 16, for the uniform test cases considered, the
two-step procedure gives a sufficiently good estimate of tRij;w. Further exploring and understanding the complicated retriev-
ing processes among the processors in two groups is certainly a fruitful direction for further study.

E.3. Appraisal of the estimates T 0p and T 0np

In this subsection, we appraise the above approaches for estimating Tp and Tnp, which are the wall clock times per block
sub-step when there is pairing and no pairing, respectively, by making measurements in long-run simulations. We perform
the following PaSR tests. For each PaSR test, two initially identical simulations (each having two groups with one processor in
each group) run until the criterion for pairing is reached. We then estimate Tp and Tnp based on the approaches described in
Section 6.2. Then the two simulations, one with forced pairing between these two groups and the other one with no pairing,
continue to run for a sufficiently long time. Based on these two long runs, Tp and Tnp are measured. The estimates are then
appraised by comparing the estimated times T 0p and T 0np with the measured times Tp and Tnp, respectively.

It should be appreciated that the estimates T 0p and T 0np are used solely to make the binary decision of whether to pair or
not. Consequently, it is not essential for the estimates to be quantitatively accurate. Rather, it is important that if Tp is sig-
nificantly greater or less than Tnp, then, correspondingly, T 0p is greater or less than T 0np. In this way, the correct pairing decision
is made in the circumstances where the decision makes a significant difference.

Fig. 17 shows the measured and estimated wall clock times in the reaction fractional step from two uniform PaSR calcu-
lations, one being coincident and the other one being disjoint. The figure shows the results only after pairing or not (i.e., not
prior to the pairing criterion being satisfied). As may be seen, for the coincident case, the estimated quantities T 0p and T 0np are
lower than the measured ones. The main reason is that the estimated percentages of function evaluation are lower than the

500 1000 1500 2000 2500
0

5

10

15

20

reaction fractional steps

W
al

l c
lo

ck
 ti

m
e

pe
r

bl
oc

k
su

b−
st

ep
 (

s)
T

np

T
p

T
np
’

T
p
’

500 1000 1500 2000 2500
0

5

10

15

20

reaction fractional steps

W
al

l c
lo

ck
 ti

m
e

pe
r

bl
oc

k
su

b−
st

ep
 (

s)

T
np

T
p

T
np
’

T
p
’

a b

Fig. 17. Wall clock time per block sub-step from the uniform PaSR calculations with Np ¼ 2, etol ¼ 1� 10�4, and A ¼ 2� 103; Top plot: coincident case;
bottom plot: disjoint case. Black dashed line: Tnp , measured wall clock time (per block sub-step) with no pairing; black solid line: Tp , measured wall clock
time with pairing; horizontal dashed dot line: T 0np , estimated wall clock time with no pairing; horizontal solid line: T 0p , estimated wall clock time with
pairing. Figure shows the results only after pairing or not (i.e., not prior to the pairing criterion being satisfied).

500 1000 1500 2000 2500
0

0.02

0.04

0.06

0.08

0.1

reaction fractional steps

pF

pF , n p

p F , n p

’

pF,ppF,p

’

Fig. 18.

The estimated and measured percentages of function evaluations (averaged over processors) from the uniform coincident PaSR calculations with no

pairing and pairing. In the calculations,Np¼ 2,e

tol¼ 1� 10� 4, andA ¼ 2� 103. Blue solid line: pF ;

np, measured with no pairing; blue (horizontal) dashedline: p0

,

the results only after pairing or not (i.e., not prior to the pairing criterion being satisfied).

tol¼1� 10

� 4and A ¼2� 103.T0

n

ð s Þ

5 5 2 4 L . L u e t a l . / J o u r n a l o f C o m p u t a t i o n a l P h y s i c s 2 2 8 (2 0 0 9) 5 4 9 0 – 5 5 2 5
observed ones. This is confirmed in the Fig. 18 which shows the estimated and measured percentages of function evaluations
(averaged over the processors) for both pairing and no pairing. Nevertheless, the estimation procedure correctly predicts that
pairing leads to significantly reduced wall clock time (compared to not pairing).

For the disjoint case, there is good agreement between the estimated and measured times. For this particular case, the
decision on whether to pair or not is not significant because the calculations with and without pairing achieve comparable
computational performance.

Recall that in the adaptive strategy, one key ingredient is the power law, i.e., Eq. (A.4), which is used to estimate the per-
centage of function evaluations for a long-run simulation. The exponent r in the power law is case-dependent and is not
F ;

np, estimated with no pairing; black solid line:pF ;

p, measured with pairing; black (horizontal) dashed line: p0

F ;

p

estimated with pairing. Figure shows

p ðs Þ T 0

p

M e a s u r e d 4 4 2 3 . 1 E s t i m a t e d ð r ¼ 0 : 5 Þ 4 4 2 2 . 9 E s t i m a t e d ð r ¼ 1 : 0 Þ 3 1 0 1 . 6 E s t i m a t e d ð r ¼ 1 : 5 Þ 2 . 1 0 . 9

L. Lu et al. / Journal of Computational Physics 228 (2009) 5490–5525 5525
known a priori. For all the cases investigated in the present study, the observed range of the exponent is from 0.5 to 1.5. In the
current implementation of the adaptive strategy, we fix r to be 1.

Table E.1 shows the measured and estimated (with different values of r) wall clock times per block sub-step from a uni-
form coincident PaSR calculation. As may be seen from the table, a particular specification of r affects the estimates of Tp and
Tnp, but nevertheless it does not affect the decisions on pairing in the adaptive strategy: for all the values of r, Tnp is larger
than Tp and the adaptive strategy makes the correct pairing decision.

References

[1] S.B. Pope, Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation, Combustion Theory and Modelling 1
(1997) 41–63.

[2] L. Lu, S.B. Pope, An improved algorithm for in situ adaptive tabulation, Journal of Computational Physics 228 (2009) 361–386.
[3] G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.C. Gardiner, V.V. Lissianski, Z.

Qin, <http://www.me.berkeley.edu/gri_mech/>.
[4] H.J. Curran, P. Gaffuri, W.J. Pitz, C.K. Westbrook, A comprehensive modeling study of iso-octane oxidation, Combustion and Flame 129 (2002) 253–280.
[5] U. Maas, S.B. Pope, Simplifying chemical-kinetics: intrinsic low-dimensional manifolds in composition space, Combustion and Flame 88 (1992) 239–

264.
[6] Z. Ren, S.B. Pope, The geometry of reaction trajectories and attracting manifolds in composition space, Combustion Theory and Modelling 10 (2006)

361–388.
[7] J.-Y. Chen, W. Kollmann, R.W. Dibble, PDF modelling of turbulent nonpremixed methane jet flames, Combustion Science and Technology 64 (1989)

315–346.
[8] T. Turányi, Parameterization of reaction mechanisms using orthonormal polynomials, Computers and Chemistry 18 (1994) 45–54.
[9] F.C. Christo, A.R. Masri, E.M. Nebot, Artificial neural network implementation of chemistry with PDF simulation of H2/CO2 flames, Combustion and

Flame 106 (1996) 406–427.
[10] J.A. Blasco, N. Fueyo, C. Dopazo, J. Ballester, Modelling the temporal evolution of a reduced combustion chemical system with an artificial neural

network, Combustion and Flame 113 (1998) 38–52.
[11] S.R. Tonse, N.W. Moriary, N.J. Brown, M. Frenklach, PRISM: piecewise reusable implementation of solution mapping an economical strategy for

chemical kinetics, Israel Journal of Chemistry 39 (1999) 97–106.
[12] J.B. Bell, N.J. Brown, M.S. Day, M. Frenklach, J.F. Grcar, R.M. Propp, S.R. Tonse, Scaling and efficiency of PRISM in adaptive simulations of turbulent

premixed flames, Proceedings of the Combustion Institute 28 (2000) 107–113.
[13] H. Rabitz, Ö. Alis, General foundations of high-dimensional model representations, Journal of Mathematical Chemistry 25 (1999) 197–233.
[14] S.B. Pope, PDF methods for turbulent reactive flows, Progress in Energy and Combustion Science 11 (1985) 119–192.
[15] J. Xu, S.B. Pope, PDF calculations of turbulent nonpremixed flames with local extinction, Combustion and Flame 123 (2000) 281–307.
[16] Q. Tang, J. Xu, S.B. Pope, PDF calculations of local extinction and NO production in piloted-jet turbulent methane/air flames, Proceedings of the

Combustion Institute 28 (2000) 133–139.
[17] M. Embouazza, D.C. Haworth, N. Darabiha, Implementation of detailed chemical mechanisms into multidimensional CFD using in situ adaptive

tabulation: application to HCCI engines, SAE Paper 2002-01-2773, 2002.
[18] R.L. Gordon, A.R. Masri, S.B. Pope, G.M. Goldin, A numerical study of auto-ignition in turbulent lifted flames issuing into a vitiated co-flow, Combustion

Theory and Modelling 11 (3) (2007) 351–376.
[19] B.J.D. Liu, S.B. Pope, The performance of in situ adaptive tabulation in computations of turbulent flames, Combustion Theory and Modelling 9 (2005)

549–568.
[20] R. Cao, S.B. Pope, The influence of chemical mechanisms on PDF calculations of nonpremixed piloted jet flames, Combustion and Flame 143 (2005)

450–470.
[21] L. Lu, Z. Ren, V. Raman, S.B. Pope, H. Pitsch, LES/FDF/ISAT computations of turbulent flames, in: Proceedings of CTR Summer Program 2004, Center For

Turbulence Research, (2004) 283–294.
[22] L. Lu, Z. Ren, S.R. Lantz, V. Raman, S.B. Pope, H. Pitsch, Investigation of strategies for the parallel implementation of ISAT in LES/FDF/ISAT computations,

in: Fourth Joint Meeting of the US Sections of the Combustion Institute, Drexel University, Philadelphia, PA, March 20–23, 2005.
[23] M.A. Singer, S.B. Pope, Exploiting ISAT to solve the reaction-diffusion equation, Combustion Theory and Modelling 8 (2004) 361–383.
[24] M.A. Singer, S.B. Pope, H.N. Najm, Modeling unsteady reacting flow with operator-splitting and ISAT, Combustion and Flame 147 (2006) 150–162.
[25] L.G. Wang, R.O. Fox, Application of in situ adaptive tabulation to CFD simulation of nano-particle formation by reactive precipitation, Chemical

Engineering Science 58 (2003) 4387–4401.
[26] J.D. Hedengren, T.F. Edgar, In situ adaptive tabulation for real-time control, Industrial Engineering Chemistry Research 44 (2005) 2716–2724.
[27] A. Varshney, A. Armaou, Multiscale optimization using hybrid PDE/kMC process systems with application to thin film growth, Chemical Engineering

Science 60 (2005) 6780–6794.
[28] E.R. Hawkes, R. Sankaran, J.C. Sutherland, J.H. Chen, Scalar mixing in direct numerical simulations of temporally evolving plane jet flames with skeletal

CO/H2 kinetics, Proceedings of the Combustion Institute 31 (2007) 1633–1640.
[29] S.M. Correa, Turbulence-chemistry interactions in the intermediate regime of premixed combustion, Combustion and Flame 93 (1993) 41–60.
[30] S.M. Correa, M.E. Braaten, Parallel simulations of partially stirred methane combustion, Combustion and Flame 94 (1993) 469–486.
[31] J.-Y. Chen, Stochastic modeling of partially stirred reactors, Combustion Science and Technology 122 (1997) 63–94.
[32] B. Yang, S.B. Pope, An investigation of the accuracy of manifold methods and splitting schemes in the computational implementation of combustion

chemistry, Combustion and Flame 112 (1998) 16–32.
[33] S. James, M.S. Anand, M.K. Razdan, S.B. Pope, In situ detailed chemistry calculations in combustor flow analyses, Journal of Engineering for Gas Turbines

and Power 123 (2001) 747–756.
[34] M. Caracotsios, W.E. Stewart, Sensitivity analysis of initial-value problems with mixed ODEs and algebraic equations, Computers and Chemical

Engineering 9 (1985) 359–365.
[35] L. Lu, S.B. Pope, A systematic investigation of in situ adaptive tabulation for combustion chemistry. Cornell University Report, FDA 07-01, 2007.
[36] http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html.
[37] L.P. Chew, Private Communication.
[38] ftp://dimacs.rutgers.edu/pub/challenge/graph/.

http://www.me.berkeley.edu/gri_mech
http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html

	Computationally efficient implementation of combustion chemistry in parallel PDF calculations
	Introduction
	Partially stirred reactor (PaSR)
	In situ adaptive tabulation (ISAT) for combustion chemistry
	ISAT concepts
	Characterization of serial ISAT performance
	Probability of function evaluation after many queries
	Estimate of the average query time {t}_{Q}
	Supercritical and subcritical ISAT regimes

	Parallel computations of turbulent combustion
	Effects of query and composition distributions
	Software x2f_mpi

	Parallel ISAT with fixed distribution strategies
	Parallel ISAT strategies: PLP/ISAT and URAN/ISAT
	Domain decomposition in composition space
	Multi-stage process
	Multi-stage parallel ISAT strategies: QT/URAN/ISAT and PREF/URAN/ISAT

	Adaptive parallel ISAT strategy
	Overview
	Grouping algorithm

	Investigation of different parallel ISAT strategies in extreme computational regimes
	Coincident query distributions, uniform number of queries
	Coincident query distributions, nonuniform number of queries
	Disjoint query distributions, uniform number of queries
	Disjoint query distributions, nonuniform number of queries

	Effect of the number of processors on the parallel ISAT performance
	Discussions and future work
	Primary retrieve and secondary retrieve
	Quick try (QT)
	The number of table entries allowed on the Lth stage {a}_{L}^{\ast}
	Application to a very large number of processors

	Conclusion
	Acknowledgment
	Probability of function evaluation after many queries
	Asymptotic behavior of {p}_{F}(\infty ,A)
	Power law for {p}_{A}

	Preferential distribution (PREF) algorithm
	Fully developed ISAT table
	Algorithm for optimal pairing
	The estimated times in adaptive ISAT strategy
	The estimated time {T}_{i}^{\prime} with no pairing
	The estimated time {T}_{ij}^{\prime} with pairing
	The estimate {N}_{Fij}^{\prime} of the number of function evaluations required
	The estimate {t}_{Rij,w}^{\prime} of the retrieving time

	Appraisal of the estimates {T}_{p}^{\prime} and {T}_{np}^{\prime}

	References

